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Abstract

We present a symbolic perturbation scheme for arbitrary polynomial geometric pred-
icates which combines the benefits of Emiris and Canny’s simple randomized linear per-
turbation scheme with Yap’s multiple infinitesimal scheme for general predicates. Like
the randomized scheme, our method accepts black box polynomial functions as input.
For nonmaliciously chosen predicates, our method is as fast as the linear scheme, scaling
reasonably with the degree of the polynomial even for fully degenerate input. Like Yap’s
scheme, the computed sign is deterministic, never requiring an algorithmic restart (as-
suming a high quality pseudorandom generator), and works for arbitrary predicates with
no knowledge of their structure. We also apply our technique to exactly or nearly exactly
rounded constructions that work correctly for degenerate input, using l’Hôpital’s rule to
compute the necessary singular limits. We provide an open source prototype implemen-
tation including example algorithms for Delaunay triangulation and Boolean operations
on polygons and circular arcs in the plane.

1 Introduction

Symbolic perturbation is a standard technique in computational geometry for avoiding degen-
eracies by adding an infinitesimally small perturbation to the inputs of a geometric algorithm.
The technique was introduced by [6], with refinements in [19], [7], [8], and [17]. Consider a
geometric function G : RN → S mapping input coordinates x ∈ RN into some discrete set
S. Examples of G(x) include Delaunay triangulation, arrangements of lines or circles, and
Boolean operations on shapes. We will assume G(x) can be computed using an algorithm that
queries its input x only through the signs of various polynomials f(x) with integer coefficients,
each representing a geometric predicate such as “is this triangle counterclockwise?” or “do two
circles intersect inside a third circle?”. If f(x) = 0, the algorithm either fails due to ambiguity
or requires special logic to handle the degeneracy.

We describe symbolic perturbation in the framework of nonstandard analysis; see [19], [8],
and [17] for the geometric meaning of this approach. To extend G(x) to degenerate inputs,
we introduce one or more positive infinitesimal quantities ε1, ε2, . . ., with 0 < εi < 1/n for
all i, n > 0. If we introduce more than one infinitesimal, we define a relative ordering of
the different monomials εp11 ε

p2
2 · · · ; the simplest is lexicographic ordering where εpi > εi+1

for all i, p > 0. We then form an infinitesimal perturbation δ ∈ R[ε1, ε2, . . .]
N from linear

∗Email: {irving,forrest}@otherlab.com, Otherlab, San Francisco, CA, United States

1

ar
X

iv
:1

30
8.

19
86

v1
  [

cs
.C

G
] 

 8
 A

ug
 2

01
3



combinations of the infinitesimals (here R[εi] is the ring of multivariate polynomials over R
generated by εi), and evaluate

G′(x) = G(x+ δ).

In detail, whenever the algorithm asks for the sign of f(x) for some integer coefficient polyno-
mial f , we instead compute f(x+ δ), which is a multivariate polynomial in the infinitesimals.
The sign of f(x+ δ) is the sign of the “least infinitesimal” nonzero monomial coefficient of this
polynomial. We distinguish between three existing symbolic perturbation schemes that can
be expressed in this framework and discuss their advantages and disadvantages.

Yap’s deterministic scheme [19] introduces one infinitesimal εi per input coordinate xi,
and lets δi = εi. This corresponds to evaluating f(x1 + ε1, x2 + ε2, . . .). Since each coordinate
has its own infinitesimal, f(x + δ) has at least one nonzero monomial unless f is identically
zero, so the scheme produces a nonzero sign for all nonzero polynomials. Unfortunately, a
degree d polynomial f results in an f(x+ δ) ∈ R[ε1, ε2, . . .] with up to

(
n+d
n

)
monomial terms

where n is the number of input coordinates used by f , which is worst case exponential in the
degree of the predicate. For extremely degenerate input, we may need to evaluate a large
number of coefficients before finding a nonzero.

Emiris and Canny’s deterministic linear scheme [7] arranges the input coordinates
into n k-vectors based on the dimension k of the geometric space as xa,b, 1 ≤ a ≤ n, 1 ≤ b ≤ k.
They introduce a single infinitesimal ε and write

δa,b = ε · (ab mod p)

where p > n is a prime. They show that this scheme produces a nonzero sign for simplex
orientation tests up to dimension k and for the incircle tests used in Delaunay triangulation.
However, as discussed in [17], extending this technique to other predicates is difficult.

In addition, as noted in [3], a fixed deterministic perturbation may turn highly degener-
ate input into worst case behavior for algorithms like convex hull: ignoring the mod p, the
deterministic linear scheme produces a convex hull of size ndd/2e when all input points are
at the origin. We believe this also applies to Yap’s scheme and may arise with the modular
deterministic linear scheme.

Emiris and Canny’s randomized linear scheme [8] again introduces a single infinites-
imal ε, but now sets δi = εyi using random coefficients yi chosen from some space Y . By the
Schwartz-Zippel lemma [16], f(x+δ) will be nonvanishing as a polynomial in ε with probability
at least 1 − d/|Y |, where d is the degree of the polynomial. Unfortunately, what we actually
need is for all polynomials evaluated during the algorithm to not vanish, which reduces the
probability of success to (1 − d/|Y |)T where T is the number of branches required. Emiris
and Canny show that their randomized scheme is very efficient in the algebraic computation
model, but suffers from a worst case cubic slowdown in the bit computation model due to the
large |Y | required. For some algorithms it is possible to reduce this slowdown by restarting
only part of the algorithm, but this adds significant complexity (in the authors’ experience).

To summarize: Yap’s deterministic scheme and the randomized linear scheme work for
arbitrary polynomial predicates, but suffer from unfortunate performance penalties. The ran-
domized linear scheme occasionally requires a restart of all or part of the computation, adding
extra complexity to the surrounding algorithm especially if multiple computations are chained
together (possibly with user interaction in between). The deterministic linear scheme is ideal
when it works but requires special analysis to verify correctness for each predicate.

Our contribution is to combine the advantages of each of the above methods.
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2 A deterministic pseudorandom perturbation

Our approach is to introduce an infinite sequence of infinitesimals ε1, ε2, . . ., choose determin-
istic pseudorandom vectors y1, y2, . . . with yk,i = rand(k, i) for 1 ≤ k < ∞, 1 ≤ i ≤ n, and
set

δ = ε1y1 + ε2y2 + · · · .

Here rand is a deterministic pseudorandom generator with random access capability. Our
implementation uses the Threefry generator of [15], with

rand : [0, 2128)× [0, 2128)→ [0, 232).

We order the infinitesimals largest first, so that εpi > εi+1 for all p > 0. As in Yap’s scheme,
this ordering lets us add one term of the perturbation series at a time, evaluating

f0 = f(x)

f1 = f(x+ ε1y1)

f2 = f(x+ ε1y1 + ε2y2)

f3 = f(x+ ε1y1 + ε2y2 + ε3y3)

...

and stopping as soon as we arrive at a nonzero polynomial fk(ε1. . . . , εk). To compute the
coefficients of a given fk, we temporarily view the infinitesimals εi as integer variables and use
a black box function for f(x) to evaluate fk(ε1, . . . , εk) with (ε1, . . . , εk) replaced with all

(
k+d
k

)
nonnegative integer tuples satisfying ε1 + · · · + εk ≤ d as discussed in [12] and Appendix A.
If any values are nonzero, we use multivariate polynomial interpolation to recover the

(
k+d
k

)
coefficients of fk and return the sign of the least infinitesimal nonzero term. Note that we
have replaced the

(
n+d
n

)
coefficients of Yap’s scheme with

(
k+d
k

)
coefficients.

We show that the computational cost is dominated by the first perturbation term even for
arbitrarily degenerate input, as long as the range Y of the random generator satisfies d3 � |Y |.
In other words, our scheme has the same cost as the simple linear scheme. To see this, note
that if fk is zero, setting one εj to one and the others to zero shows that f(x+y1), . . . , f(x+yk)
are zero. Thus, if the polynomial predicate f(x) is not identically zero, the Schwartz-Zippel
lemma gives

Pr(fk = 0) ≤ dk

|Y |k
.

The sizes of the lattice points on which we evaluate f grow slowly with k, so the cost of a
single polynomial evaluation is effectively O(1) where the constant depends on the polynomial.
Similarly, the sizes of the numbers used for multivariate interpolation also grow slowly with
k, so the cost of multivariate interpolation at level k is O

(
d
(
d+k
k

)2)
(see Appendix A). Thus,

the expected cost of the perturbation scheme is

∞∑
k=0

Pr(fk = 0)O

(
d

(
d+ k + 1

k + 1

)2
)
≤
∞∑
k=0

dk

|Y |k
O(d2k+3) = O

(
d3
∞∑
k=0

d3k

|Y |k

)
= O(d3)

where we need d3 < |Y | to guarantee a convergent geometric series. In practice, d3 � |Y |; for
|Y | = 232 terms with k ≥ 2 contribute less than 1/4000th of the expected cost for polynomials
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up to degree 100. We emphasize that this bound is independent of the input x, and therefore
holds even for maliciously chosen input data. However, we do assume that rand behaves as
a strong random source and, in particular, that the polynomials f(x) are not chosen with
knowledge of rand.1

Thus, our method has the same complexity as the deterministic linear scheme, but like
Yap’s scheme and the randomized linear scheme it works on arbitrary polynomials. As in
the randomized scheme, the perturbation does not create any worst case behavior not already
present in the input data. Since the occasional random fallbacks occur one polynomial at a
time, the outer structure of a geometric algorithm is blissfully unaware that randomness is
used internally, and in particular we avoid poor bit complexity scaling when evaluating many
predicates over the course of an algorithm.

In practice, the dominant cost of the algorithm is black box predicate evaluation. Even
a single multiplication of two degree d/2 terms has complexity O(d2) using naive quadratic
multiplication (which is typically the fastest algorithm for small degrees). The linear per-
turbation phase performs d polynomial evaluations, for a total complexity of O(d3), and the
constant is typically higher than for interpolation since most polynomials involve several such
multiplications. An O(d3) slowdown for degenerate cases is faster than previous general ap-
proaches but still a significant drawback (see section 5 for benchmarks). Fortunately, a tiny
amount of finite perturbation applied to the input can minimize both the O(d3) slowdown of
perturbation and the O(d2) slowdown of unperturbed exact evaluation, relying on symbolic
perturbation to unconditionally correctly handle the few remaining degeneracies.

3 Other approaches

Since the original introduction of the symbolic perturbation method several alternative schemes
have been introduced for treating degeneracies in numerical algorithms. All of these approaches
seem to require some algorithm or predicate specific treatment, which complicates the pro-
cess of developing and especially testing new algorithms. However, the algorithm specific
approaches may be superior to a general approach such as ours when they apply, either by
avoiding the slowdown of occasional exact arithmetic entirely by treating degenerate cases
faster (our approach introduces a slowdown of O(d) for the first perturbation level over exact
evaluation), or by computing the true exact answer rather than a perturbed answer.

Perhaps the most natural approach to treating degeneracies is to manually extend the
definition of G(x) to degenerate cases and write algorithms which treat these cases directly.
For example, in an arrangement of lines, intersections of three or more lines can be detected and
represented as higher degree vertices in the arrangement graph. Burnikel et al. [3] argue that
perturbation is slower and more complicated to implement than simply handling degeneracies
directly and present two degeneracy-aware algorithms as evidence. We believe our method
reduces the implementation complexity of symbolic perturbation, but agree that a tailored
algorithm is faster on highly degenerate input. Unlike the deterministic symbolic perturbation
schemes, an algorithm built on our method will treat fully degenerate data as purely random
data, in particular avoiding the worst case behavior of convex hull discussed in [3].

The controlled perturbation approach of [11] applies a small finite perturbation to the input
points to avoid degeneracies, allowing the rest of the algorithm to run with inexact floating
point arithmetic. Input points (spheres in their case) are processed one at a time, perturbing

1Though maliciously choosing f(x) so that f1 = f2 = 0 is quite useful for unit testing purposes.
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each new input to avoid degeneracies against all previous inputs. Controlled perturbation
requires a careful enumeration of the possible degeneracies that may arise, and a careful choice
of the finite tolerance required for the algorithm to run safely. A good tolerance bound may
be computed with numerical analysis techniques as in [10], at the cost of significant algorithm-
specific analysis. The main advantage of their approach over ours is speed: the majority of
their algorithms avoid all exact arithmetic and even all interval arithmetic or other filters.
As noted above, if degeneracies are pervasive and a slowdown of O(d3) is too large, an input
to a symbolically perturbed algorithm can be randomly jittered by a small amount, reducing
the practical overhead to the cost of interval analysis filtering without affecting correctness.
Unlike controlled perturbation, this requires no algorithm specific analysis.

Devillers et al. [5] present qualitative symbolic perturbation, which replaces the algebraic
perturbations used in previous perturbation schemes (and ours) by a sequence of carefully
chosen, geometrically meaningful perturbations. Their approach replaces the O(d) slowdown
of the first perturbation level with a predicate dependent slowdown and may be faster than
our method when it applies. However, the geometric perturbations and the analysis of their
effect on the predicates must be performed separately for each predicate, which complicates the
design of algorithms and is a likely source of complexity during implementation and debugging.
Moreover, since the perturbations depend on the algorithm, chaining two algorithms together
requires adjusting the perturbations to be compatible. Their approach shares with ours (and
indeed with Yap’s) the idea of a sequence of increasingly small perturbations, applied one at
a time until a nonsingular result is obtained.

Finally, we address a common complaint against symbolic perturbation (e.g., [3]), namely
that a complicated postprocessing step is required to obtain the exact answer from the per-
turbed result. We argue that the input to a typical geometric algorithm already contains some
degree of noise or numerical inaccuracy, and therefore that classes of errors arising from in-
finitesimal symbolic perturbation already arise in practice for exact algorithms run on slightly
bad input data. For example, consider the Boolean union of two squares which touch exactly
along one edge. An exact algorithm run on this ideal input would merge the two squares into
one rectangle, while symbolic perturbation may leave the squares separate or even join them
only partway along the edge. However, if the input is already slightly shifted, both algorithms
produce exactly the same result. The solution in both cases is to offset the squares slightly
outwards prior to union, which resolves both infinitesimal and finite errors.

4 Implementation

A C++ implementation of our symbolic perturbation technique is available under a BSD
license at https://github.com/otherlab/core/tree/exact2. The code includes three algo-
rithms built on top of the perturbation core: Delaunay triangulation, Boolean operations on
polygons, and Boolean operations on polygons built from circular arcs. We plan to expand
the set of implemented algorithms and use them for various tasks in CAD/CAM such as shape
decomposition for manufacturing and motion planning. Benchmarks and plotting scripts are
available along with the paper source at https://github.com/otherlab/perturb.

For simplicity and speed, our implementation quantizes all input coordinates to the integer
range [−253, 253], the largest range of integers exactly representable in double precision. This
allows use of fast interval arithmetic filters [2], falling back to exact integer evaluation using

2See https://github.com/otherlab/core/commit/dc0f10918d17507d for the version benchmarked below.
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GMP if the filter fails [9], and falling back to symbolic perturbation if the exact answer is zero.
The polynomial is provided as a black box evaluation routine (see exact/perturb.h in the
code). For multivariate interpolation we evaluate fk(ε1, . . . , εk) on our fixed set of (ε1, . . . , εk)
tuples, use the algorithm of [12] to map into the Newton basis, then expand into the monomial
basis. It is possible to perform all computations required for polynomial interpolation using
integers only; see Appendix A. To avoid a significant slowdown due to memory allocation
inside GMP, the final version was written using manual memory allocation and the low level
interface to GMP.

In addition to computing the perturbed signs of polynomial predicates, we use our scheme
to compute exactly rounded perturbed constructions. Given a rational function f(x)/g(x) with
g(x) = 0, we compute the perturbation series g1, g2, . . . until we find a nonzero gk, compute
the perturbed numerator fk, then evaluate the perturbed result as the ratio of the matching
least infinitesimal nonzero term in fk and gk. In a correct algorithm this ratio will always be
finite, in that fk will never contain a nonzero term larger than gk, but it is easy to detect
this case and throw an exception as an aid to debugging. Note that the ratio of matching
least infinitesimal terms is exactly l’Hôpital’s rule for computing limits. Finally, the ratio is
rounded to the nearest integer. We can similarly compute

√
f(x)/g(x) by evaluating the limit

of the ratio as a rational and taking an exactly rounded square root.
We emphasize that these perturbed constructions are guaranteed to be within L0 distance

1/2 of the true answer, where the true answer is consistent with the rest of the algorithm and
obeys any geometric invariants that apply in the exact case. For example, a constructed union
of a convex polygon with itself will be within L0 distance 1/2 of the input, and in particular
will avoid all but extremely tiny foldovers that might result from performing constructions
with floating point arithmetic when an algorithm completes. Moreover, since the maximum
error is known, they can be fed back into the same algorithm as tight interval bounds without
fear of introducing inconsistencies. Our circular arc Boolean code makes use of this to perform
more accurate interval-based filtering. For example, when comparing y coordinates of different
intersections of circles, we precompute the rounded intersections and avoid costly polynomial
evaluation if the rounded coordinates differ.

Debugging and testing the symbolically perturbed algorithms we have implemented so far
has been a quite pleasant experience. Once the perturbation core itself is trusted, bugs in
the surrounding algorithm necessarily manifest on a set of positive measure, since any taken
branching path through the code is described by algebraic inequalities which give rise to open
sets. Thus, all bugs are likely to be found by running the algorithm on random input. In
contrast, an algorithm which handles degeneracies specially or tailors the perturbation to the
predicates involved must actually test each kind of degeneracy when debugging the algorithm.
Any speedup logic such as interval filtering can be easily checked by including a compile time
flag to unconditionally evaluate both fast and slow paths. This tests both the correctness of
the filter and the correctness of the predicate, which is important for complicated predicates.

Although our currently implemented algorithms are serial, our symbolic perturbation
scheme can easily be used in parallel algorithms since each predicate evaluation is determinis-
tic. However, the dramatic slowdown between interval filtering and perturbed exact evaluation
might interfere with load balancing at very high levels of parallelism, such as on a GPU.

In a correct geometric algorithm, no polynomial passed to symbolic perturbation will be
identically zero; this would correspond to a fundamentally degenerate question such as “Is
the triangle (x7, x7, x7) counterclockwise?”. However, it is convenient for debugging to detect
these cases and produce useful output. Therefore, if both f1 and f2 are identically zero, our
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Figure 1: Left: Delaunay triangulation of 2000 normally distributed points. Right: com-
putation time for Delaunay triangulation of (green, lower) n normally distributed points
and (blue, upper) n copies of the origin. The fully degenerate case ranges from 13.1 to
15.5 times as slow as the random case due to falling back from interval arithmetic fil-
ters to integer computation and symbolic perturbation. To reproduce these figures, run
examples delaunay --count 2000 --plot 1 and examples delaunay --count 1000000.

code pauses to run a randomized polynomial identity check [16] and throws an exception if a
nonzero is not found. The identity test evaluates the polynomial on 20 random points; this
produces a false positive with probability under 10−171 (sufficient for the lifetime of the code)
and always reports failure for a truly zero polynomial. The check has negligible effect on
overall cost, since usually f1 6= 0.

For Delaunay triangulation, we use the partially randomized incremental construction of
[1]. Our implementation is O(n log n) for arbitrarily degenerate input, and happily computes
a random but valid Delaunay triangulation if all points are at the origin. For Boolean op-
erations, we find intersections using axis-aligned bounding box hierarchies and find winding
numbers for each contour by tracing rays along horizontal lines (horizontal lines are safe due
to symbolic perturbation). Our current Boolean operation algorithms degrade to O(n2 log n)
for fully degenerate input since they compute an arrangement of curves as the first step; this
slowdown is independent of the perturbation technique used, and also occurs for badly formed
nondegenerate input. Compared to [4], which used degree 12 predicates for circular arc ar-
rangements, our implementation uses predicates of degree at most 8 via a combination of
polynomial factoring and algorithmic changes (see Appendix B). Even degree 8 is problematic
for Yap’s scheme due to the worst case exponential blowup in the number of terms. Other
work on circle arrangements in CGAL was done by [18]; this is orthogonal to our contribution.

5 Results

Results for Delaunay triangulation are shown in Figure 1. Since our algorithm is worst case
O(n log n) independent of degeneracies, the slowdown ratio from random input to fully degen-
erate input (all points at the origin) is constant: between 13 and 15.5 due to falling back from
interval arithmetic filters to exact integer computation and symbolic perturbation. We note
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Figure 2: Left: Boolean union of 1000 randomly chosen circular arc 4-gons. Right: com-
putation time for union of different numbers of (red, lower) randomly distributed 4-gons,
(green, middle) nearly but not exactly degenerate 4-gons, and (blue, top) exactly degen-
erate 4-gons. The exactly degenerate case ranges from 65 to 252 times slower than the
nearly degenerate case, which is as expected since most of the cost is in degree 6 or 8
predicates (63 = 216, 83 = 512). Both random and nearly degenerate cases use al-
most entirely interval arithmetic; the latter is slower since it is closer to the quadratic
worst case. To reproduce these figures, run examples circles --plot 1 --count 1000 and
examples --mode circles --count 1000 --min-count 10.

that our current Delaunay triangulation algorithm is not state of the art, though this is or-
thogonal to our contributions: CGAL’s routine is 4.3 times faster on 106 normally distributed
points (0.704 s vs. 3.05 s). It is also dramatically faster for all points at the origin (0.11 s vs.
43 s), though only because CGAL prunes duplicate points as a preprocess. To reproduce our
CGAL benchmarks, run examples delaunay --count 1000000 --cgal 1.

Results for circular arc Booleans are shown in Figure 2. Log-log slopes near 2 are expected
because of the O(n2) complexity of general arrangements of circles. The slowdown for the
exactly vs. nearly degenerate case is much greater than for Delaunay triangulation because of
the higher degree and increased complexity of the predicates. Further optimizations to the
degenerate case are possible, in particular inlining GMP calls for small arguments and caching
certain repeated predicate evaluations, but these are of questionable importance in practice
since a tiny amount of finite jittering removes the vast majority of degeneracies.

6 Conclusion

We have presented a deterministic pseudorandom symbolic perturbation scheme which com-
bines the advantages of several existing techniques. Given a polynomial f(x), we evaluate the
sign of f(x+ ε1y1 + ε2y2 + · · · ) where yk are deterministic pseudorandom and εk are infinites-
imals in decreasing order of size. Typically only the first infinitesimal in this series need be
considered, so our method is as fast as the linear symbolic perturbation schemes, but works
for arbitrary polynomials and appears deterministic to the caller.
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A Polynomial interpolation

We found several useful papers discussing different aspects of univariate and multivariate poly-
nomial interpolation, and collect these results for convenience. The algorithms discussed here
perform O(N2) linear operations to convert N samples to N coefficients. Adds and multiply-
by-constants for degree d integers require time O(d), so the total complexity is O(dN2).
Asymptotically faster algorithms using spectral methods exist, but we do not consider them
here.

In order to recover the coefficients of fk(ε1, . . . , εk) we must perform multivariate interpo-
lation given the values of fk at our chosen set of tuples. In the univariate case, this amounts
to the classical divided difference algorithm. As discussed in [14] and [13], the divided differ-
ence algorithm can be beautifully expressed as the following factorization of the Vandermonde
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matrix into bidiagonal matrices, shown here for the degree 3 case:
1 x0 x20 x30
1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33

 =


1 0 0 0
1

x0−x1

1
x1−x0

0 0

0 1
x1−x2

1
x2−x1

0

0 0 1
x2−x3

1
x3−x2


−1


1 0 0 0
0 1 0 0
0 1

x0−x2

1
x2−x0

0

0 0 1
x1−x3

1
x3−x1


−1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

x0−x3

1
x3−x0


−1


1 x0 0 0
0 1 x1 0
0 0 1 x2
0 0 0 1




1 0 0 0
0 1 x0 0
0 0 1 x1
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 x0
0 0 0 1



(1)

This factorization was given in [14], though in a somewhat less elegant form due to placing
ones along the diagonal of L instead of U in the LU factorization. The clean LU factorization
was given in [13], though without the further bidiagonal factorization.

The first half of this factorization is the classical divided difference algorithm to convert
values f(x0), . . . , f(xk) into the coefficients of f in the Newton basis x(x− 1) · · · (x− n+ 1).
The second half expands from the Newton basis down to monomials. In our case, we have
xk = k, so all of the ratios in each bidiagonal matrix have the same denominator. In particular,
we can clear fractions by multiplying the inverse by d! where d is the degree of f , after which
all computations can be performed in integers. Alternatively, we can use the fact that while
the inverse of the Vandermonde matrix is not integral, both our polynomial values and the
coefficients of the polynomials in both Newton and monomial basis are integers. It turns
out that in this case all intermediate results in the divided difference algorithm are integers
as well. To show this, we must prove that the kth forward difference ∆kf(x) of an integer
polynomial is divisible by k!. We use the following argument due to Qiaochu Yuan3. Since
the transformation to and from the monomial basis to Newton basis (the second half of (1))

3http://math.stackexchange.com/questions/413600
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is integral, it suffices to check k! | ∆kf(x) for an element of the Newton basis

f(x) = x(x− 1) · · · (x− n+ 1) = n!

(
x

n

)
.

Since ∆
(
x
n

)
=
(

x
n−1
)
we have

∆kx(x− 1) · · · (x− (n− 1)) = n!

(
x

n− k

)
=

n!

(n− k)!
x(x− 1) · · · (x− (n− k − 1))

= k!

(
n

n− k

)
x(x− 1) · · · (x− (n− k − 1))

For the multivariate case, Neidinger [12] provides an elegant generalization of the univariate
divided difference algorithm when the polynomial is evaluated on an “easy corner” of points,
which includes the 0 ≤ εi, ε1 + · · · + εk ≤ d set that we use. All intermediate results in
their algorithm are multivariate divided differences and are therefore integral by the above
argument. They discuss only interpolation into the multivariate Newton basis consisting of
polynomials such as ∏

i

xi(xi − 1) · · · (xi − (ni − 1))

which corresponds to the first half of Equation 1. The multivariate generalization of the second
half of Equation 1 is easy, since the multivariate Newton to monomial basis transformation
matrix factors into commuting matrices each expanding one variable, and these matrices are
block diagonal with respect to the other variables.

B Degree 8 circular arc predicates

The critical predicate required for circular arc arrangements, determining whether one inter-
section of two arcs is above another intersection, can be reduced to degree 12 using resultant
techniques [4]. This holds for the general case of two unrelated intersections between pairs
of circles C0, C1 and C2, C3. However, to compute a circular arc arrangement it suffices to
consider the case where C0 = C2; that is, comparing the y coordinates of the intersections of
one circle with two others. In this case, the polynomials can be factored into terms of degree
≤ 8. One significant algorithmic change is required, since we can no longer fire a horizon-
tal or vertical ray from the intersection of C0, C1 and detect intersections against unrelated
circle arcs. Instead, we must fire rays along exactly known (degree 1) y coordinates, which
is sufficient to determine the winding number of a given circular arc polygon (or connected
component of an arrangement) as long as the bounding box touches at least one ray. For most
applications, polygons smaller than this may be safely discarded.

We derived the degree 8 version of the predicate by starting with an inequality involving
square roots, then iteratively checking polynomial signs and squaring to eliminate square
roots until a fully polynomial inequality is reached. All polynomials to be tested were then
factored in Mathematica down to their minimal degree, then manually simplified down to
the more compact expressions shown below (Mathematica’s FullSimplify was insufficient
for this purpose), using Mathematica to check each stage of the simplification. The resultant

12



techniques used in [4] would have also found the degree 8 solution had they been applied to the
three circle special case. It should be possible to automate the entire process from algebraic
inequality to optimized minimum degree polynomial expressions, but we have not yet done so.

The derivations below make several simplifications, for example assuming that squaring
does not reverse the direction of inequalities. For full details, refer to https://github.com/
otherlab/core/blob/b186ab68303/exact/circle_predicates.cpp#L289 or circles.nb in
https://github.com/otherlab/perturb.

B.1 The intersection of two circles

Let circle Ci have center ci and radius ri, and define cij = cj − ci. Assuming C0 and C1

intersect, parameterize one of their intersections by

p01 = c0 + αc01 + βc⊥01.

where v⊥ is v rotated left by 90◦. We have

(p01 − ci)2 = r2i

p201 − 2p01 · ci + c2i = r2i .

Subtracting the two circle equations gives

−2p01 · c01 + c21 − c20 = r21 − r20
−2c0 · c01 − 2αc201 + (c0 + c1) · c01 = r21 − r20

(1− 2α)c201 = r21 − r20

1− 2α =
r21 − r20
c201

α̂ = 2c201α = c201 + r20 − r21

Substituting into C0’s equation gives

(p01 − c0)2 = r20(
αc01 + βc⊥01

)2
= r20

α2c201 + β2c201 = r20

β2 =
r20
c201
− α2

β̂2 =
(
2c201β

)2
= 4r20c

2
01 − α̂2.

To summarize, the intersection between circles C0 and C1 is described by

p01 = c0 + αc01 + βc⊥01

α̂ = 2αc201 = c201 − r21 + r20

β̂2 = (2c201β)2 = 4r20c
2
01 − α̂2

where we choose the positive or negative square root for β depending on which intersection is
desired.
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B.2 Is one circle intersection above another?

Given three circles C0, C1, C2, is p01 below p02? This predicate has the form

p01y < p02y

c0y + α01c01y + β01c01x < c0y + α02c02y + β02c02x

0 < α02c02y − α01c01y − β01c01x + β02c02x

0 < α̂02c02yc
2
01 − α̂01c01yc

2
02 − β̂01c01xc202 + β̂02c02xc

2
01

0 < A+B1

√
C1 +B2

√
C2

where A,B1, B2, C1, C2 are polynomials and C1, C2 > 0 since the two intersections are assumed
to exist. To reduce this equality to purely polynomial equalities, we first compute the signs
of A,B1, B2. If these all match, we are done. Otherwise we move the square root terms that
differ from A in sign to the RHS and square. Assuming A > 0, this gives either

A+B1

√
C1 > −B2

√
C2

A2 +B2
1C1 + 2AB1

√
C1 > B2

2C2

A2 +B2
1C1 −B2

2C2 > −2AB1

√
C1 (2)

or

A > −B1

√
C1 −B2

√
C2

A2 > B2
1C1 +B2

2C2 + 2B1B2

√
C1C2

A2 −B2
1C1 −B2

2C2 > 2B1B2

√
C1C2 (3)

The signs of the RHS’s of (2) and (3) are known. The polynomial LHS’s are degree 10, but
factor as

A2 +B2
1C1 −B2

2C2 = c202

(
c201
(
α̂02

(
α̂02c

2
01 − 2α̂01c01yc02y

)
+ 4r20(c201xc

2
02y − c201yc202x)

)
−α̂2

01

(
c201x − c201y

)
c202

)
A2 −B2

1C1 −B2
2C2 = c201c

2
02

(
c202α̂

2
01 + c201α̂

2
02 − 2c01yc02yα̂01α̂02

−4r20(c201yc
2
02x + c201xc

2
02y + 2c201xc

2
02x)

)
and therefore reduce to degree 8 and 6, respectively. If the LHS and RHS of (2) or (3) have the
same sign, we square once more to eliminate the final square root. Assuming positive LHS,
squaring (2) gives

(A2 +B2
1C1 −B2

2C2)
2 > 4A2B2

1C1

A4 − 2A2B2
1C1 +B4

1C
2
1 − 2A2B2

2C2 − 2B2
1B

2
2C1C2 +B4

2C
2
2 > 0

E > 0

and squaring (3) gives

(A2 −B2
1C1 −B2

2C2)
2 > 4B2

1B
2
2C1C2

A4 − 2A2B2
1C1 +B4

1C
2
1 − 2A2B2

2C2 − 2B2
1B

2
2C1C2 +B4

2C
2
2 > 0

E > 0.
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That is, the two inequalities square into the same degree 20 polynomial E, which factors into
degree ≤ 6 terms as

E = c401c
4
02E+E−

E± = c202α̂
2
01 + c201α̂

2
02 − 2α̂01α̂02(c01yc02y ± c01xc02x)− 4r20(c01xc02y ∓ c01yc02x)2

If intersections between four circles are compared, the analog to E is still divisible by c401c402,
but the remaining degree 12 polynomial is irreducible as expected from [4].

As might be expected, performing these calculations only semiautomatically resulted in a
large number of typos and copying errors. The fact that the final result is automatically checked
against interval filters in the code was critical to making the debugging process practical.
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