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Abstract—We present a strong solution of the board game
pentago, computed using exhaustive parallel retrograde analysis
in 4 hours on 98304 (3 × 215) threads of NERSC’s Cray
Edison. At 3.0 × 1015 states, pentago is the largest divergent
game solved to date by two orders of magnitude, and the only
example of a nontrivial divergent game solved using retrograde
analysis. Unlike previous retrograde analyses, our computation
was performed entirely in-core, writing only a small portion of the
results to disk; an out-of-core implementation would have been
much slower. Symmetry was used to reduce branching factor
and exploit instruction level parallelism. Despite a theoretically
embarrassingly parallel structure, asynchronous message passing
was required to fit the computation into available RAM, causing
latency problems on an older Cray machine. All code and
data for the project are open source, together with a website
which combines database lookup and on-the-fly computation to
interactively explore the strong solution.

I. INTRODUCTION

Computer play of combinatorial games such as chess,
checkers, and go has been an active area of research since
the early days of computer science [1]. The limit of computer
play is a solved game, when a computer can play perfectly
either from the start position (weakly solved) or from any
position (strongly solved). The first nontrivial weakly solved
game was Connect-Four in 1988 by both Allen and Allis [2],
later strongly solved by Tromp [3]. Many games have been
solved since, the most challenging being the weak solution
of checkers [4]. The checkers solution involved 18 years
of parallel out-of-core retrograde analysis culminating in a
3.9 × 1013 position endgame database together with a 1014

operation forward search.

To date, all solved games have been either convergent
(fewer positions near the end of the game) or amenable
to knowledge-based strategies. Checkers is an example of a
convergent game: while the entire 1020 state space is too large
to explore fully, the set of positions with 10 or fewer pieces has
a more manageable 3.9× 1013 positions. Pieces are removed
but never added, so a database of ≤ 10 piece positions can be
computed via retrograde (backward) analysis starting with 1
piece, then 2 pieces, and so on up to 10 pieces. The computed
database is then used to prune a forward search starting from
the beginning of the game.

In contrast to convergent games, the number of positions in
a divergent game increases with time (typically as more stones
are added to the board), making traditional retrograde analysis
plus forward search impractical. Thus, all nontrivial divergent
games solved to date have game-specific knowledge based

win tie loss

Fig. 1. (Left) With perfect play, the first player wins with any opening move
except the corners, which tie. (Right) A more delicate position with black to
play. The full strong solution can be explored at http://perfect-pentago.net.
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Fig. 2. Counts of pentago positions vs. stones on the board, with symmetries
removed. Run web/counts in the source repository to reproduce.

strategies which can be used to avoid brute force: zuzgwang
control in Connect-Four [2], threat-space search for gomoku
and renju [5], [6], and H-search in hex [7]. For discussion on
the characteristic of various solved games, see [8].

Pentago is a divergent game designed by Tomas Flodén
and sold by Mindtwister [9]. We reproduce the rules here for
completeness. Pentago is played on a 6×6 board, divided into
four 3× 3 quadrants. There are two players, black and white,
who alternate turns. The goal of each player is to get five
stones of their color in a row, either horizontally, vertically, or
diagonally. Each turn, a player places a stone in an empty space
in some quadrant, then chooses a possibly different quadrant
to rotate 90 degrees left or right. If both players get five in
a row at the same time, or the last move is played with no
five in a row, the game is a tie. If a player makes five a row
by placing a stone, there is no need to rotate a quadrant: the
player wins immediately.
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Unlike divergent games solved to date, no strong knowl-
edge based strategies are known for pentago, and existing pro-
grams are capable of searching only to fairly low depths [10],
[11]. This is primarily a consequence of the high branching
factor of pentago: there are 36 · 8 = 288 possible first moves
including rotation and an average branching factor of 97.3 over
all states.1 To reduce the branching factor to a manageable
level, our solver performs all computations in terms of rotation
abstracted positions consisting of all 256 ways to rotate the
quadrants of a given board; this eliminates the factor of 8
due to rotation for an average branching factor of only 12.2.
Operating on more than one board at a time lets us take full
advantage of SSE acceleration.

Unfortunately, symmetry techniques alone are insufficient
to solve pentago on commodity hardware. The game has
3,009,081,623,421,558 (3 × 1015) states with symmetries re-
moved, all but 0.3% of which are reachable with valid play;2
the number of states over time is shown in Figure 2. To solve
the game using retrograde analysis, we traverse all positions
in reverse order of the number of stones, starting from the 35
stone slice (the 36th is computed on demand) and iteratively
computing the n-stone slice from the (n + 1)-stone slice
up to the beginning of the game. This requires storing two
adjacent slices at a time, requiring 213 TB at peak before
compression. Our initial target was to fit into half of the
NERSC Cray Hopper’s 217 TB, which was plausible using
fast but weak compression only if minimal memory was wasted
communication buffers and working storage.

In order to minimize working memory, our parallel solver
grabs inputs from other processes immediately before they
are used, overlapping a small number of work chunks to
hide latency. Since computing each chunk takes a variable
amount of time (see below), we opted for a fully asynchronous
communication pattern: when a process needs an input block,
it sends a message to the owner of that block, and the owner
replies asynchronously with the data.

The solver was run exactly once at full scale, generating a
3.7 TB database of perfect results with 0 through 18 stones and
establishing that pentago is a win for the first player to move
(Figure 1). The full strong solution can be explored online at
http://perfect-pentago.net.

At 3.0× 1015 states, pentago is the largest divergent game
computation by a factor of 150 (vs. 2×1013 for 9×6 Connect-
Four), and the largest strongly solved game by a factor of 660
(vs. 4.5 × 1012 for 7 × 6 Connect-Four). Among retrograde
analyses used to solve games, it is the largest by state space by
a factor of 77 (vs. 3.9×1013 in the solution of Checkers). How-
ever, it is not the largest endgame database over any game: the
7-piece Lomonosov Endgame Tablebases for chess are 140 TB
in size, and were computed over six months at Moscow State’s
Lomonosov supercomputer [12]. Unfortunately, the technical
details of the Lomonosov computation are unpublished, so a
detailed comparison is difficult.

1To reproduce the branching factor average, run
bin/analyze branch in https://github.com/girving/pentago. For the
rest of the paper, only the command will be given.

2Run analyze counts and analyze reachable, respectively.

II. PROBLEM DEFINITION

Let S be the set of arrangements of black and white stones
on a 6 × 6 board. Only some of these are valid pentago
positions: if we let black play first, we have equal numbers
of black and white stones on black’s turn and one extra black
stone on white’s turn. Define predicates fb, fw : S → {0, 1} by
fc(s) = 1 if color c has a five in a row. Given color c, let c̄ be
the other color. For s ∈ S, let pc(s) ⊂ S be the positions
reached by placing a stone of color c, r(s) the positions
reached by rotating exactly one quadrant 90◦ left or right. Let
vc(s) be the value of position s with c to play: vc(s) = −1, 0, 1
if c loses, ties, or wins, respectively. If fb(s), fw(s), or s has 36
stones, the game is over and vc(s) = fc(s)−fc̄(s). Otherwise

vc(s) = max
a∈pc(s)

{
1 if fc(a)

maxb∈r(a) hc(b) otherwise

where

hc(s) =

{
fc(s)− fc̄(s) if fc(s) ∧ fc̄(s)

−vc̄(s) otherwise

III. ABSTRACTING OVER ROTATIONS

The exact symmetry group of pentago is the 8 element
dihedral group D4 with 4 global reflections and 4 global rota-
tions. Computing only one element from each D4 equivalence
class saves a factor of 8, but does nothing for the large branch-
ing factor of the game. Thus, we consider the local group of all
256 ways to rotate the four quadrants, which has the abelian
group structure L = Z4 × Z4 × Z4 × Z4. Combined with
the group of global symmetries, the full group of approximate
symmetries is a semidirect product G = Z4

4 o D4 with 2048
elements.

Computing one board b from each equivalence class w. r. t.
G is not enough; we must compute a function

fb : L→ {−1, 0, 1}

mapping g ∈ L to the result of the quadrant rotated board
gb. Each board is a win, loss, or tie, so there are 3256 such
functions. To avoid ternary arithmetic we use 2 bits per value
for uncompressed data: one bit for win vs. loss/tie and one for
win/tie vs. loss. Thus, for each board we have two functions
Z4

4 → {0, 1}, each a 4 × 4 × 4 × 4 array of bits. Each such
function L→ {0, 1} is packed into a 256 bit table.

Since quadrant rotations do not change the equivalence
class w. r. t. G, operating on these functions fb removes the
branching factor due to rotations. In its place, we have the
mixing operation

rmax : (L→ {0, 1})→ (L→ {0, 1})
rmax(f)(g) = max

r∈R
f(g + r)

where R ⊂ L is the set of 90◦ degree rotations left or right,
and we use + because the group L is abelian. In addition to
rmax, two other rotation abstracted routines are needed. First,
given the position of stones of one color, we must be able to
compute the set of rotations g ∈ L which produce five in a
row. Second, our equivalence class representative w. r. t. G can
change when we add a stone, so we must be able to transform
fb into fgb for any g ∈ G; this involves cyclic shifts, dimension
transpositions, and reflections of 4× 4× 4× 4 bit tables.

http://perfect-pentago.net
https://github.com/girving/pentago
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Fig. 3. We decompose the set of pentago position into sections, each a 4D array of blocks (shown here as 2D). The results for a given block are the combination
of results from each block line that contains it, with each such block line depending on exactly one block line from a different section. Each computation from
input line to output line can be performed on a different processor, first gathering the input blocks together into a complete line, and finally scattering the output
blocks to their owners. Each pink rounded rectangle lies in a possibly different process. Since we compute only those sections which are unique with symmetries
removed, some input lines must be rotated before computation.
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Fig. 4. Each section is a 4D array of functions fabcd : L → {−1, 0, 1}.
Each dimension corresponds to all patterns of stones in one of the four
quadrants with fixed counts of black and white stones, including only patterns
lexicographically minimal under rotation. For each (a, b, c, d) describing the
four quadrants of a board, fabcd gives the loss/tie/win values for all 256 ways
to rotate the four quadrants. The order is chosen so that reflected pairs are
adjacent so that reflection preserves the block structure. The figure shows 2D
slices of the full 4D array.

Although the code required for these operations is complex,
verifying their correctness was a straightforward process of
checking group theoretic definitions against the much simpler
routines operating on one board at a time. The ease of
verification frees us to make the routines as complicated as
required for speed without reducing confidence in the code.

IV. DATA LAYOUT AND DISTRIBUTION

Given a board b, we must choose a unique representative
out of the equivalence class Gb. This choice should be made
such that adding a stone changes the representative choice in as
few ways as possible, so that the effective branching factor will
be smaller once we take data layout into account. Concretely,
since we have eliminated branching factor due to rotation, an
average board has 12.2 child boards which are needed as input;
if representatives were chosen arbitrarily, the representatives of
the child equivalent classes w. r. t. G might be located in up to
12.2 processes depending on how data is distributed.

Therefore, we partition all boards in a given slice (fixed
number of stones) into sections defined by the numbers of
stones of each color in the four quadrants, computing only
sections whose counts are lexicographically minimal under

D4 symmetry. Within a given section, we consider only
boards whose quadrants are lexicographically minimal under
per-quadrant rotations; each quadrant is independent under
this requirement, so the section becomes a four dimensional
rectangular array where each dimension defines the stones in
one quadrant. We precompute an ordering of these rotation
minimal quadrant states so that we can convert from a position
in the four dimensional section array to a board state using
table lookup. The structure of one such section is shown in
Figure 4. There are at most four quadrants to chose from when
placing a stone (some may be full near the end of the game),
so at most four child sections contribute to the results for a
given parent. In other words, we have reduced the effective
branching factor from 12.2 to 4.

Sections alone provide insufficiently fine parallelism (the
largest is 1.8 TB uncompressed), so we divide each 4D section
array into 8× 8× 8× 8 blocks and partition the blocks for all
sections among the different processes. When a stone is added
in a quadrant, we move to a child section with index layout
different from the parent only for the quadrant where the stone
was added since the other quadrants have the same pattern of
stones. Therefore, a single block in a parent section depends
on inputs from one line of blocks in up to four child sections.
Since the different input lines for a block correspond to moves
in different quadrants, we can compute each line contribution
separately on different processes and combine them with max
on whichever process owns the output block.

The structure of the computation is illustrated in Figure 3.
Say we want to compute an output block line in section n,
which is a k × 1× 1× 1 grid of blocks (possibly transposed)
corresponding to an 8k×8×8×5 grid of boards (block sizes
may differ from 8 at section boundaries). Our output block line
depends on a single input block line in section n + 1, which
(possibly after rotation) is an 8k′ × 8 × 8 × 5 grid of nodes.
The input and output block lines differ in size only along the
long dimension, since the long dimension corresponds to the
quadrant where we will place a stone. When we compute index
(a, b, c, d) of the output line, we mix together several indices
(a′, b, c, d) with different a′ corresponding to the different
places to put a stone in the lines’ quadrant. Since the map
from a to a′ is many to many, computing the entire block line
on a single processor gives an effective branching factor of 4
for communication cost even though the underlying branching
factor is 12.2. Once the block line is computed, its component



blocks are scattered to their owners to be merged together via
max with other contributions (each block needs up to four
such block line contributions).

Since our block structure is symmetric w. r. t. dimension
and our quadrant positions are always minimal with respect to
rotation, the block structure of sections is preserved when the
board is rotated. However, the ordering of quadrant states does
change when a quadrant is reflected, since a lexicographically
least quadrant may no longer be lexicographically least after
reflection. To maintain the block structure, we require even
sized blocks (8 in our case) and adjust our precomputed
quadrant state ordering so that reflected pairs occur next to
each other in the same block. With this trick, the block
structure is invariant to all symmetries.

The relatively simple structure of sections, blocks, and
rotation-abstracted values within blocks does have a cost: if a
position or section is preserved by a symmetry it will be double
counted in the data layout. Abstracting over rotations increases
the number of effective positions by 5.4% and removing
symmetries only at the section level costs an additional 9.3%,
for a total overcounting of 15.2% relative to storing each
symmetry-unique position once.3

A. Deterministic pseudorandom partitioning

In parallel, we must partition the set of blocks across
processes to balance memory usage and the set of block
lines across processes to balance compute. Ideally, the process
computing a given block line would also own many of the
input and output blocks in order to minimize communication.
Unfortunately, these desires couple together the partition for
all slices. Over all slices, there are 3,654,002,393 blocks and
996,084,744 block lines.4 Thus, we have a graph partitioning
problem with 4,650,087,137 nodes divided into 72 clusters,
each cluster defining a load balancing constraint. Although
existing graph partitioning codes such as ParMETIS [13] might
be sufficient for our problem, we have sufficient computation to
hide communication latency and opt for a simple randomized
partitioning scheme instead.

We partition each slice independently. Since there are at
most 8239 sections to a slice, and each section is a regular
4D grid of blocks, we can define an ordering of all block
lines by arranging the sections back to back. We choose a
pseudorandom permutation of the ordered block lines and give
each process a contiguous chunk of the scrambled ordering.
Each block is then randomly assigned to one of its four
lines, and given to the process which owns that line. In both
cases, these choices can be made consistently with only an
O(1) size random seed shared between processes: we use
the arbitrary size cipher technique of [14] for random access
random permutations and the Threefry generator of [15] for
conventional random numbers. Since the cipher permutations
are invertible, we can find the process owning a given block
or block line in O(1) time.

At scale, a pseudorandom partitioning scheme automati-
cally balances any quantity where the central limit theorem
applies. In particular, though our scheme does not explicitly

3Run analyze ratio.
4Run analyze approx.
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Fig. 5. Load balance ratio (max /min) for various quantities as a function
of stones on the board using deterministic pseudorandom partitioning. 89% of
the computation occurs from slice 20 to 28, where all quantities balance to
within 20%. Run paper/numbers load to reproduce.

account for the different amounts of work required to compute
different block lines, or the different sizes of blocks at the
boundary of sections, there are enough blocks and block lines
to keep the max /min ratio to within 10-20% for all large
slices and all relevant quantities (Figure 5).

B. Compression

Since our uncompressed memory usage would be at least
213 TB, we compress all data in memory until needed using
the fast but weak compression library Snappy [16]. Most
blocks are 256 KB (64 ·84 bytes) uncompressed, large enough
to compress each block separately without harming compres-
sion ratio. Despite its speed relative to stronger compression
such as ZLIB or LZMA [17], [18], Snappy still consumed
about 29% of our compute time ignoring I/O.5 Stronger
compression is thus out of reach for in memory purposes,
although we do use LZMA when writing out the smaller final
data set.

With compression the memory usage varies unpredictably,
with two consequences. First, repeatedly allocating and deal-
locating irregular block sizes results in significant fragmenta-
tion. During early testing on BlueGene, which has no virtual
memory system, fragmentation caused the code to run out of
memory much earlier than necessary. We solved this with a
manual compacting garbage collector for bulk data storage,
which is straightforward in our case due to the lack of pointers.
Second, estimates from slices near the end of the game gave
a compression ratio of roughly 1/3. Since we were uncertain
whether this ratio should grow or shrink at the peak of the
computation, and wanted a high probability of solving the
game in a single run, we used a conservative estimate of 0.4
when determining how many nodes to use. However, the actual
average compression ratio was 0.26.6 Taking advantage of the
unexpectedly good compression would have required dynamic
partitioning, or even (ideally) a dynamic number of MPI nodes.

V. ASYNCHRONOUS CONTROL FLOW

Within slice n, each process can compute its allocation
of block lines in any order, since all inputs are from slice
n + 1 which has already been computed. However, most of
these inputs are stored on other processes, and due to memory
limitations only a small fraction of them can be stored locally
at any given time. Moreover, the time to compute a given

5See snappy fraction in paper/numbers.
6See total data in paper/numbers.
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Fig. 6. Images from a trace visualization tool used to diagnose performance problems in asynchronous code. (Left) The history of a 16 process, 96 thread run
computing the section with four stones of each color in each quadrant. Each process has one communication thread (mostly red for waiting) and five worker
threads performing computation, with colors showing the type of computation performed. (Right) A zoom showing the information flow related to part of a
block line computation. At the leftmost point in the graph shown, the process decides to compute a given block line, and sends out requests for input data to
other processes. Once all responses arrive, the computation begins. When the computation finishes, the results are scattered to other processes and compressed
for storage. To reproduce, run paper/history.

block line varies with size, ruling out a lockstep communica-
tion/compute cycle. Instead, we use an asynchronous control
flow where each process sends requests for input data for at
most five block lines at time, begins computing as soon as
all inputs for a block line are in place, sends out output data
when ready, and listens for incoming output data from other
processes to be merged.

We emphasize that asynchrony is needed only because of
the memory constraint: if we had 4 times as much memory in
order to store all inputs locally, we could split the computation
into communication / compute epochs and use an embarrass-
ingly parallel control flow during compute.

We use a hybrid MPI/Pthread model where each 6 thread
process has 1 communication thread and 5 worker threads
(with 8 processes per 48-hyperthread Edison node). A hy-
brid structure reduces the memory usage by allowing sev-
eral threads to share the same temporary storage required
when computing a block line. The communication thread
must simultaneously listen for incoming remote messages and
completed tasks from the worker threads; this can be done
with self-to-self MPI messages in environments which support
MPI_THREAD_MULTIPLE but requires alternatively polling
between MPI_Testsome and pthread_spin_trylock
if only MPI_THREAD_FUNNELED is available.

At the time the code was written, the MPI 3 standard
was not yet available on the target machine, and the one
sided communication primitives in MPI 2 were not sufficient
for our communication pattern.7 Specifically, the MPI 2 one
sided primitives provide no asynchronous way to know when
a request completes; and our only synchronization points
are between entire slices. MPI 3 solves this problem: after
an initial communication phase exchanging pointers to the
required compressed slice n + 1 blocks, all input requests
during slice n computation could be handled with MPI_Rget

7For more discussion, see http://scicomp.stackexchange.com/
questions/2846/simulating-the-mpi-isend-irecv-wait-model-with-one-sided-
communication.

[19]. Unfortunately, MPI 3 does not solve the reverse problem
of output messages: when an output block arrives, any previous
data for that block must be uncompressed, combined with the
new data, and recompressed for storage. MPI_Accumulate
has no support for user defined operations, so output messages
would still be limited to two sided communication. Finally,
MPI 3 provides the useful MPI_Ibarrier primitive which is
exactly what we need to know when all processes have finished
computing and thus when the previous slice can be deallocated;
since we use MPI 2 we must simulate MPI_Ibarrier using
a manual tree reduction.

The asynchronous control flow was tricky to write but
straightforward to debug, since most bugs manifested as dead-
locks. Each message and response is labeled with a unique
global id, so deadlocks were easy to eliminate by reading traces
of events. However, the performance characteristics of the
code were harder to understand, since high latency might be a
result of unrelated communication at the same time. Existing
profiling tools such as TAU [20] were insufficient for tracing
the dependencies between asynchronous messages combined
with control flow across threads. Thus, we wrote a custom trace
visualizer with knowledge of the information flow between
inputs through compute to output; an example visualization
is shown in Figure 6. On NERSC’s Cray XE6 Hopper, this
tool confirmed that long idle periods were due to high latency,
but was not sufficient to diagnose the underlying cause of the
problem. Unfortunately, we still do not know the cause of
this latency. Testing on the Argonne’s BlueGene/Q Vesta was
inconclusive since the code easily saturated BlueGene’s poor
integer performance. On the newer Cray Edison used for the
final production run, the problem went away: worker threads
were idle only 16.4% of the time with I/O excluded.8

VI. PERFORMANCE

Our final production job ran on NERSC’s Cray XC30
Edison, using 98304 (3×215) threads including hyperthreading

8See Idle vs. total time in paper/numbers.

http://scicomp.stackexchange.com/questions/2846/simulating-the-mpi-isend-irecv-wait-model-with-one-sided-communication
http://scicomp.stackexchange.com/questions/2846/simulating-the-mpi-isend-irecv-wait-model-with-one-sided-communication
http://scicomp.stackexchange.com/questions/2846/simulating-the-mpi-isend-irecv-wait-model-with-one-sided-communication
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Fig. 7. Time profile of the main production run, showing total worker thread
time usage over all processes. All game logic is contained in the compute
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are idle and the communication thread on each process is inside MPI/IO.

(49152 cores, 2048 nodes). The bulk of the computation
from slice 35 down to 19 took 2.7 hours. Starting at slice
18 we began writing output results to disk, though our first
computation finished writing only slices 17 and 18 before
hitting an unfortunately chosen wall clock limit of 4 hours.
Two smaller jobs on 192 and 128 nodes were used to finish
the computation down to slice 0, the start of the game.

The time profile of the computation is shown in Figure 7.
Excluding I/O, only 16.4% of the total worker thread time
is spent idle,8 confirming that our random load balancing
scheme is sufficient for near peak performance. Since only
5 out of 6 threads per rank are workers, we could theoretically
speed up the computation by up to 6/5 if the communication
thread performed useful work. Unfortunately, existing MPI
implementations do not implement performant asynchronous
progress, even ignoring our need for active responses to
messages (see [21] for a good discussion).

Including I/O, our performance is further from optimal:
51.0% of worker thread time is idle, with 34.6% due entirely
to I/O. This is due to both very high latency when writing
small files during every slice (around 200 seconds independent
of file size) and low bandwidth when writing file results
in slices 17 and 18. The high latency was a consequence
of using MPI_File_write_ordered when writing small
files, since MPICH and thus Cray MPI implement this routine
using shared files for synchronization rather than fast network
collectives. Unfortunately, the low bandwidth is likely user
error: we accidentally wrote to NERSC’s global scratch filesys-
tem rather than the special filesystem optimized for Edison.

Since much of the complexity of our implementation
derives from the memory constrained in core structure, it is
important to estimate how much slower the computation would
have been if run out of core. Edison’s peak I/O bandwidth
is 168 GB/s, or 66 GB/s on our 2048 out of 5192 nodes if
bandwidth is shared proportionally. An out of core version of
our algorithm would write each block once and read each block
four times, for a total of 3.6 PB of I/O uncompressed or 0.94
PB with Snappy compression. Thus, at peak I/O bandwidth,
a Snappy compressed out of core version of our code would
take 4.0 hours for I/O.9 In contrast, the non-I/O portion of our
main run took 1.8 hours, for a speedup of 2.25. If peak I/O
performance could not be achieved, or I/O and compute could
not be fully overlapped, the speedup would be larger.

9See Total I/O time estimates in paper/numbers.
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Fig. 8. Latency for 8-byte request-for-input messages between different
nodes in a 96-thread test run on Edison. Around 20% of the messages
complete in under 10 ms, but the tail is quite long. To reproduce, run
paper/numbers messages 0,2.

The rotation abstracted compute kernel uses SSE for in-
struction level parallelism, packing each 256-bit L → {0, 1}
function into two 128 bit SSE registers. rmax can be computed
for one such table in 152 SSE instructions, or 3/5ths of
an instruction per position since each function encodes 256
positions. Computing which of the 256 quadrant rotations of a
board give five in a row takes 190 instructions and 640 bytes
of cache coherent table lookup, and transforming a function
fb into fgb takes between 60 and 200 instructions dependent
on the particular g ∈ G. Although bit-level representations of
board state are standard in computational games, we believe
this is the first instance where values of many distinct positions
are evaluated in parallel using bit twiddling.

Measuring over the entire compute kernel (which excludes
idle time, communication, and (de)compression), our SSE
routines achieve a 1.81× speedup on Edison over 64-bit
versions and a 2.25× speedup on an Intel Core i7, compared to
a naive speedup of 2 for twice as many bits per instruction.10

We are not sure what caused the superlinear speedup in the
2.25 case; one possibility is reduced register pressure.

Even on Edison’s faster network, our typical message
latency is still quite high as shown in Figure 8. Here la-
tency is measured from immediately before MPI_Isend to
the time we start responding to the finished message when
MPI_Testsome succeeds. The large latencies may be due
to interference between small messages and larger messages,
as the communication thread processes different types of
messages asynchronously. Since the latency on Edison is low
enough for our purposes, we have not investigated in detail.

Within each node, we used the PAPI hardware counter
library [22] to measure instruction issue, cache misses, and
branch mispredications. The results show that our workload
has minimal memory bandwidth requirements (under 15 MB/s
per core in performance critical sections), mispredicts branches
mostly during Snappy (de)compression, and makes significant
use of dual instruction issue only for the one out of five worker
threads that share a core with the less active communication
thread; if hyperthreading is turned off, the issue rate jumps
from 1.21 to 1.89 instructions per cycle.11

VII. CORRECTNESS AND FAULT DETECTION

Since our goal is a database of perfect play, it is important
to consider the possible sources of error in the computation.

10See SSE vs. non-SSE speedup in paper/numbers.
11Run paper/numbers papi.



We are interested only in undetected errors, since empirically
the code ran without crashing or failing an assertion.

On the software side, we make heavy use of unit tests
throughout the code, including simple tests for correctness
of simple routines, bootstrap tests comparing simple routines
to more complicated variants (such as when abstracting over
rotations), and comparison tests between different algorithms.
In particular, we compare our parallel backward code against
the results of forward search, both at the beginning and end
of the game. Near the end of the game this is easy, as
forward search can quickly compute perfect play. Near the
beginning, our tests replace all values at slice 4 or 5 with
random values, compute optimal play up to the random slice
with both backward and forward algorithms, and compare.

On the hardware side, the main failure points are DRAM,
CPU, network, and disk. Undetected disk errors are unlikely
since the primary output files are checksummed as part of
LZMA compression. Of DRAM, CPU, and network, DRAM
errors dominate according to [23] (Tables 6.11 and 6.12), at
least on BlueGene. Edison memory and network are SECDED
(single error correct, double error detect), so an undetectable
error would require three simultaneous failures. Unfortunately,
we do not know a reliable method to estimate this probability
conditional on an apparently successful run, since DRAM
errors are far from uncorrelated events [24]. However, we
believe the probability is quite small, and in particular that
undetected hardware errors are less likely than software errors.

As a test on software errors when running the code at scale,
we write out small sample files with the results of randomly
chosen boards during each slice. Large numbers of samples
generated by the main run were validated against forward
search for slices 20 and up, so any remaining software errors in
the parallel code must manifest only on a small set of positions.
We also write out win/loss/tie counts for each slice. Both
sample and count files would be useful for cross-validation
should someone reproduce the calculation in the future.

Unfortunately, the sample files are insufficient to detect
rare software bugs or hardware failures, and indeed we know
of no cheap method for detecting this kind of unlikely error
without rerunning or rewriting the code. Solving pentago falls
most naturally into the complexity class PSPACE (polynomial
space), and indeed the similar five-in-a-row game gomoku has
been proven PSPACE-complete [25]. Unless NP = PSPACE,
it is unlikely that a short certificate exists proving that pentago
is a first player win, especially if we require a strong solution
with perfect play known from all positions.

VIII. OPEN SOURCE AND DATA

All code for this project is open source, and is available
online at https://github.com/girving/pentago. The repository
includes the paper source and all log files used to generate
timing and other numbers. To regenerate any reported number
from the data, run either bin/analyze <command> or
paper/numbers; see the footnotes and figure captions.

The 3.7 TB strong solution is hosted on Rackspace Cloud
Files; see the download instructions at https://github.com/
girving/pentago/#data. We store small sparse sample and count
files in Numpy’s .npy format [26], and the main solution

files in a custom .pentago format using the described block
structure with LZMA compression per block. The format
is described at https://github.com/girving/pentago/blob/master/
pentago/data/supertensor.h. Both .npy and .pentago for-
mats are easy to write in parallel using MPI I/O.

The strong solution is useless without a convenient method
for exploring the data, so we have built a website showing
which moves win, lose, or tie from any position: http://perfect-
pentago.net. The frontend Javascript uses a backend server at
http://backend.perfect-pentago.net:2048 to look up the value of
positions. Any position with 18 or fewer stones is fetched from
the database using an HTTP range request to download the
surrounding compressed block. As in the parallel algorithm,
the children of a position fall into at most four blocks; we cache
the uncompressed blocks to take advantage of this locality.

Positions with more than 18 stones fall outside the database
and are recomputed from scratch using a specialized serial
retrograde solver. Since there are at least 18 stones already on
the board, usually in an asymmetric configuration, this solver
rotates the board only through the rmax function, avoiding
the complexity of standardizing positions into rotation minimal
configurations. In addition, we use the fact that rmax flips the
parity of the Z4

4 symmetry group to store half the required
bits, reducing the storage per rotation abstracted position from
64 bytes to 32. With these optimizations, evaluating all child
values of an 18 stone position takes 16 seconds on a single
2.6 GHz Intel Xeon thread, fast enough for interactive use.

Both remote lookups and from-scratch computation have
significant latency, so the backend server is written in
Javascript using Node.js [27] for asynchronous use by multiple
clients. The Javascript handles asynchronous logic and I/O, but
calls down to C++ for performance intensive computation. The
backend server has a simple JSON API, and anyone wishing
to develop their own frontend is welcome to query it directly.

IX. CONCLUSION

We have strongly solved the board game pentago using
retrograde analysis on 98304 threads of Edison, a Cray XC30
machine at NERSC. Symmetry techniques were used to im-
prove the branching factor of the game and take advantage of
SSE instruction level parallelism. Unlike previous retrograde
analysis, the computation was almost entirely in-core, writing
results to disk only near the end. To fit safely into memory, we
use a fully asynchronous communication structure where each
process requests data from other processes as needed, performs
computation, and scatters results to their destinations.

The asynchronous control flow was a primary complicating
factor during development and optimization of the code, and
runs against several limitations of MPI including difficulties in
synchronizing between MPI and threads, lack of support for
asynchronous progress in existing implementations, poor one-
sided communication in MPI 2 (fixed in MPI 3 too late for use
in this project), and lack of user defined operations in one-sided
MPI_Accumulate. Unfortunately, the latter would require
both strong asynchronous progress and careful consideration
of threading semantics. Profiling tools were also a significant
limitation, leading us to implement our own tracing and
visualization tool to understand the flow of information across
processes and between threads without one process. Although

https://github.com/girving/pentago
https://github.com/girving/pentago/#data
https://github.com/girving/pentago/#data
https://github.com/girving/pentago/blob/master/pentago/data/supertensor.h
https://github.com/girving/pentago/blob/master/pentago/data/supertensor.h
http://perfect-pentago.net
http://perfect-pentago.net
http://backend.perfect-pentago.net:2048


our custom tool helped localize the problem to high latency, we
were unable to diagnose the underlying cause; further analysis
would likely require network profiling and visualization tools
incorporating knowledge of network topology.

Compression was a requirement to fit into memory, but
we were limited to the fast and weak Snappy library to
prevent compression from becoming a compute bottleneck.
Compression also makes memory usage difficult to predict
in advance, causing us to overestimate memory requirements
and use more Edison nodes than required. Avoiding such
overestimate without the I/O cost of checkpointing would
require a dynamic number of MPI nodes.

Our computation shares many characteristics with other
irregularly structured, data intensive HPC workloads. These
characteristics include multiple levels of structure (slices, sec-
tions, block lines, blocks, boards, bits), memory restrictions,
asynchronous control flow, reliance on integer performance
(compression and game logic), and reliance on both fast
compute and fast communication. Multiple levels of structure
are important in many applications (e.g., domains, pages,
paragraphs, sentences, words for web search) and often warrant
different parallelism strategies at different levels. In addition
to allowing larger problem sizes either in RAM or on-package
RAM, the ability to operate near a memory limit improves
performance for codes with imperfect parallel scaling and
eases the scheduling problem for shared clusters, increasing
both latency and bandwidth for users. Asynchronous control
flow adds flexibility which can be spent on memory constraints
or irregular work chunk sizes (common with multiple levels
of structure). Poor integer performance ruled out BlueGene
for our purposes, which is problematic even for floating point
codes if compression is required. Finally, traditional Big Data
applications often have less tightly coupled communication
patterns such as MapReduce [28]; our application is suffi-
ciently latency-critical to obtain clear benefit from the faster
network on Edison compared to Hopper, and serves as an
intermediate example between traditional HPC and Big Data
(see the Graph 500 benchmark suite for other examples [29]).
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