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Figure 1: Simulation of a wake behind a kinematically scripted boat (1500×300 horizontal resolution).

Abstract

We present a new method for the efficient simulation of large bod-
ies of water, especially effective when three-dimensional surface ef-
fects are important. Similar to a traditional two-dimensional height
field approach, most of the water volume is represented by tall cells
which are assumed to have linear pressure profiles. In order to avoid
the limitations typically associated with a height field approach, we
simulate the entire top surface of the water volume with a state of
the art, fully three-dimensional Navier-Stokes free surface solver.
Our philosophy is to use the best available method near the inter-
face (in the three-dimensional region) and to coarsen the mesh away
from the interface for efficiency. We coarsen with tall, thin cells
(as opposed to octrees or AMR), because they maintain good res-
olution horizontally allowing for accurate representation of bottom
topography.
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1 Introduction
Scenes involving stormy seas, sudden floods or cascading rapids
provide some of the most spectacular visual effects shots in fea-
ture films (e.g. “The Day After Tomorrow” [Iversen and Sakaguchi
2004]), and are invariably expensive whether they are simulated via
computer or hundreds of thousands of gallons of real water. Since
water is opaque at large scales, its appearance is governed by a sur-
face layer while the interior flow is “visible” only through its effect
on the surface.

Fully three-dimensional Navier-Stokes solvers produce stunning re-
sults, but do not scale well to large bodies of water when the simu-
lation is carried out on a uniform Cartesian grid. Although the sit-
uation can be improved significantly by coarsening away from the
surface with an octree as in [Losasso et al. 2004], there are two ma-
jor drawbacks to this approach. First, the current octree approaches
do not make full use of the highly accurate MAC grid method as
in [Enright et al. 2002], instead relying too much on nodal values
for interpolation resulting in increased numerical dissipation. Of
course, this can be fixed by coarsening the octree away from the in-
terface, and otherwise applying a standard MAC solver in the uni-
form cells near the water surface. Second, and more importantly
(especially since we propose no remedy), large octree cells cannot
represent bottom topography. Even if one refined near the bottom of
the domain, the large octree cells in the middle of the water filter out
horizontal detail making the surface simulation unaware of any rich
structure below. In contrast, methods based on height fields (such
as the shallow water equations [Kass and Miller 1990; O’Brien and
Hodgins 1995]) use tall cells with detailed refinement in the hori-
zontal directions, thus capturing the effects of complex bottom to-
pography rather well. Unfortunately, these methods do not support
overturning or other interesting three-dimensional behavior.



Figure 2: We use uniform cells near objects and within a specified
optical depth of the surface, and coarsen with tall cells elsewhere.

Thus, we place the following requirements on our method. First, we
need detailed three-dimensional behavior near the interface, down
to the depth at which turbulent motion directly affects the look of
the surface. This “optical depth” for simulation will usually be
greater than the visible optical depth, since interesting turbulence
will cause the visible water to continuously mix with the water in a
larger layer underneath. Second, the large unseen region of the liq-
uid should be represented as efficiently as possible without losing
plausible bulk motion and important details such as bottom topog-
raphy. The first requirement is satisfied by using a state of the art,
uniform MAC grid Navier-Stokes solver near the interface (as in
[Enright et al. 2002]). This also allows for the addition of any other
technique that works on a uniform grid, such as vortex particles
[Selle et al. 2005]. Outside of this surface layer, we maintain the
same resolution in the horizontal directions but coarsen in the verti-
cal direction obtaining tall thin cells that reach down to the bottom
of the domain (satisfying the second requirement). Since the effects
of bottom topography diminish with increasing depth, the method
is most useful in the shallow water regime.

One advantage of this hybrid approach is that it reduces to exactly
the standard MAC discretization under full refinement. In contrast,
the octree method of [Losasso et al. 2004] suffers from increased
dissipation due to repeated back and forth averaging even when
fully refined. While this dissipation was partially reduced in [Guen-
delman et al. 2005] using FLIP rather than PIC averaging (see also
[Zhu and Bridson 2005]), our experience with uniform grids indi-
cates that the full MAC method still produces higher quality results.

Although a grid of this type could be represented with pointer
structures (as in [Whitaker 1998]) connecting all the tall and short
cells together in the required fashion, this could prove rather in-
efficient. Luckily, we can leverage recent work on Run-Length-
Encoded (RLE) grids by [Houston et al. 2004; Breen et al. 2004;
Wiebe and Houston 2004; Nielsen and Museth 2005; Houston et al.
2005; Houston et al. 2006] (note that [Curless and Levoy 1996]
applied RLE to volumes and [Bridson 2003] suggested RLE level
sets). Their fluid simulator solves the level set on a narrow band
near the interface, but uses a uniform MAC discretization inside
the liquid for the fluid solver with long cells allowed only in the
air. This is analogous to previous local level set and narrow band
methods such as [Peng et al. 1999] and [Adalsteinsson and Sethian
1995]. Thus, their method improves the cost of the level set algo-
rithm and removes the need to store and check grid cells deep inside
the air, but does not reduce the time spent solving for advection and
pressure in the fluid itself, which is typically most of the computa-
tional cost. In contrast, we use tall cells in the water, which greatly
reduces the computational cost outside the band of cells near the in-
terface. This requires novel methods both for discretizing tall cells
full of liquid as well as for coupling these cells to the standard uni-
form cells. Our tall cells only occur far from the interface, and thus
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Figure 3: (a) pressure and velocity for a uniform MAC grid (b)
pressure in uniform and tall cells (c) horizontal pressure derivatives
(d) vertical pressure derivatives (e) horizontal velocities co-located
with horizontal pressure derivatives (f) vertical velocities co-located
with vertical pressure derivatives.

do not participate in the particle level set method. However, we do
require methods for advecting the velocity field and solving for the
pressure in order to make the velocity divergence free. Note that
all our tall cells are vertical as is typical for shallow water methods,
because it is reasonable to assume linear pressure variation in the
vertical direction but not in the horizontal directions.

2 Previous Work

The three-dimensional Navier-Stokes equations were popularized
with the work of [Foster and Metaxas 1997b; Stam 1999; Fedkiw
et al. 2001]. These equations were combined with methods for sim-
ulating a water surface in [Foster and Metaxas 1996; Foster and
Metaxas 1997a; Foster and Fedkiw 2001], and we use the particle
level set approach of [Enright et al. 2002] as the method of choice in
the three-dimensional surface layer of water. [Baxter et al. 2004b]
used a conservative heightfield fluid model in an interactive paint-
ing system. Other work on water and liquids includes viscoelastic
fluids [Goktekin et al. 2004], solid fluid coupling [Carlson et al.
2004; Guendelman et al. 2005], control [McNamara et al. 2004;
Shi and Yu 2005], contact angles [Wang et al. 2005], sand [Zhu and
Bridson 2005], and two phase flow [Hong and Kim 2005].

There are a number of two-dimensional techniques for large bodies
of water including the popular methods for deep water [Fournier
and Reeves 1986; Peachey 1986; Mastin et al. 1987; Ts’o and
Barsky 1987; Thon et al. 2000]. We refer the interested reader
to the recent work of [Hinsinger et al. 2002] and course notes of
[Tessendorf 2002] and [Baraff et al. 2003]. Of course, the deep
water equations ignore bottom topography and do not resolve fully
three-dimensional phenomena at the surface. Another interesting
technique consists of solving the two-dimensional Navier-Stokes
equations for the horizontal velocities, and then using the pres-
sure to define a height field as in [Chen and Lobo 1994]. [Thon
and Ghazanfarpour 2001] also solved the two-dimensional Navier-
Stokes equations for the horizontal velocity in streams, but used
a noise function for the vertical velocity. [Neyret and Praizelin
2001] proposed a simpler stream model using a two-dimensional
Laplace equation for the bulk flow. Finally, a few authors have
tackled large bodies of water with the three-dimensional Navier-
Stokes equations, e.g. focusing on splash and foam in [Takahashi
et al. 2003] and on breaking waves in [Mihalef et al. 2004].

3 Grid Structure
We simulate on a uniform two-dimensional horizontal grid of ver-
tical columns that contain both uniform cells and tall cells that re-
place collections of uniform cells, e.g. see Figure 2. The tall and
uniform cells can be arbitrary in each column, and in particular we



Figure 4: Three balls splashing into water (300× 200 horizontal resolution). The fully refined case (left) and the 1/4 refined case (middle)
are quite similar. However, quite different results are obtained if one doesn’t refine enough (right, 1/16 refined).

split tall cells at the ground to match bottom topography (Figure 6).
In a uniform MAC grid, scalars are stored at cell centers while ve-
locity components are stored on their respective faces (Figure 3a).
Level set values are only required in uniform cells near the inter-
face, whereas pressure and velocity are needed everywhere. Tall
cells contain two pressure values corresponding to the cell centers
of the uppermost and bottommost uniform cells that the tall cell re-
places (Figure 3b). Pressure values can be interpolated to the cen-
ters of the other uniform cells replaced by a tall cell using vertical
linear interpolation.

Later, we will calculate horizontal pressure derivatives for every
pressure sample (Figure 3c), and thus we co-locate horizontal ve-
locities with them (Figure 3e). Figure 3e outlines the control vol-
ume around each minimal face noting that minimal faces between
tall cells may contain two horizontal velocities (as shown in the fig-
ure). Between these two velocities, we interpolate horizontal veloc-
ities on the uniform faces replaced by this minimal face using linear
interpolation consistent with the pressure and its derivatives. Verti-
cal pressure derivatives and vertical velocities are shown in Figure
3d and 3f (also co-located) along with outlined control volumes.
The linear pressure profile in the tall cell dictates that all uniform
grid vertical faces replaced by the face at the center of this cell
should have the same vertical velocity.

3.1 Refinement and Coarsening

When we change the structure of tall and uniform cells, the velocity
needs to be interpolated to the new grid. The vertical velocities at
the center of new tall cells are set to the average value of all the
vertical faces replaced by it, whereas those for uniform cells are de-
fined as their interpolated values. This conserves vertical momen-
tum. For horizontal velocities, the difficulties occur when a new
minimal face replaces more than one uniform face. For example,
let u( ja),u( ja +1), . . . ,u( jb) be a sequence of velocity values on a
minimal face. We desire bottom and top values ua and ub such that
linear interpolation between them best approximates the sequence.
The least squares error is
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Using the formulas for sums of linear and quadratic sequences,
these equations simplify into
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where n = jb − ja. If some subsequence of the u( j)’s come from a
minimal face’s linear profile, the same formulas can compute that
portion of the right-hand side sum in constant time. This 2×2 sys-
tem is trivially inverted to find ua and ub. As shown in [Houston
et al. 2006], the entire process of building a new grid and transfer-
ring data between grids takes linear time.

We use a one grid cell band of uniform cells around moving objects,
so that no special tall cell treatment is required for one-way or two-
way coupling with solids (though we implemented only one-way
coupling so far). In addition, we define an optical depth down to
which we want to preserve as much detail as possible and use uni-
form cells within that distance from the interface. We emphasize
that the optical depth required for a given problem does not shrink
under refinement, rather it is a true length scale related to the three-
dimensional physics we wish to capture.

3.2 Refinement Analysis and Comparison

The effects of varying the optical depth are illustrated in Figure
4. With a sufficient optical depth, satisfactory results are ob-
tained (middle). Otherwise, we fail to resolve enough of the three-
dimensional flow structure and obtain nonphysical results (right).
These simulations used 4 processors in a 2×2 grid (see section 6),
and took 250, 116, and 59 seconds per frame, respectively. Note
that the fully refined splash (left) uses essentially the same method
as [Houston et al. 2006].

Since the computational cost of a tall cell is independent of its
height, all the tall cells together are equivalent in cost to a few extra
layers of uniform cells regardless of the depth of the water. That is,
if a certain optical depth of uniform cells is needed, then another
layer of cells provides the extra computation needed for our ap-
proach. It is unlikely that another adaptive method such as an octree

Figure 5: (Left) The same optical depth as Figure 4 (middle), but
with twice the water depth. While this would be twice as expensive
with a uniform grid, there is almost no cost increase using our ap-
proach. (Right) An octree simulation with two levels of coarsening
away from the interface (312×208×208 effective resolution).



Figure 6: A cross-section of the grid from a river simulation showing tall cells used to represent bottom topography.

would make this layer more efficient. In particular, we can double
the depth of the water without incurring the factor of two slowdown
characteristic of uniform grids or previous RLE techniques (Figure
5 (left)). Moreover, the resulting splash is qualitatively different
from the shallow simulation, which shows the importance of water
depth on the bulk flow. The deeper simulation took 140 seconds a
frame due to the increased surface area compared to Figure 4 (mid-
dle).

Figure 5 (right) shows a serial octree simulation of the same splash.
Although Figure 4 (middle) takes the same amount of total compu-
tation (460 seconds per frame), our method is readily parallelized
leading to faster turnaround and larger simulations. Excessive com-
putational costs kept us from refining the octree to the same resolu-
tion throughout the entire optical depth region, and we instead were
forced to coarsen away from the typical three grid cell band, which
made the simulation significantly more viscous. This highlights an
interesting aspect of our approach, in that we combine our tall cells
with a uniform grid whereas it is probably better to combine them
with an adaptive octree grid. In fact, this is straightforward to im-
plement by placing individual octrees in each of our uniform cells
just as was done in [Losasso et al. 2006].

4 Uniform Three-Dimensional Method
The inviscid, incompressible Navier-Stokes equations for the con-
servation of mass and momentum are

ut +u ·∇u+∇p/ρ = g (2)
∇ ·u = 0 (3)

where u = (u,v,w) is the velocity, p is the pressure, ρ is the density,
and g is the acceleration due to gravity. We use a standard, uniform
MAC grid fluid solver in the band of uniform cells, together with
the particle level set method of [Enright et al. 2002]. Both the level
set and velocity field are advected with semi-Lagrangian advection
[Stam 1999] in this band. Since the level set is only defined near
the interface, its semi-Lagrangian rays will interpolate from other
uniform cells. In contrast, velocity is defined everywhere, and some
semi-Lagrangian rays will ask for information from tall cells. These
velocities will instead be updated with the same algorithm used to
update velocities in tall cells (see section 5.1). Note that the pres-
sure is solved for globally, coupling the uniform and tall cells to-
gether (see section 5.2). In situations where additional turbulence
is desired, we use the vortex particle approach of [Selle et al. 2005].
Figures 1 and 7 show simulations with vortex particles seeded be-
hind a boat to represent the turbulence generated by a propeller.

5 Adaptive Two-Dimensional Method
In this section, we address the advection of velocity on all the tall
cells and on the uniform cells that were not updated with semi-
Lagrangian advection because they were too close to the tall cells.
We also address solving for the pressure on an arbitrary collection
of tall and uniform cells. These discretizations will be constructed

by summing uniform finite volume discretizations over tall cells
using linear or constant basis functions, and can be considered dis-
crete finite volume/finite element methods.

5.1 Advection

We use first order accurate conservative upwinding for all tall cells
and any uniform cells that are not updated with the semi-Lagrangian
method. Since the number of cells that need to be updated with
this method is a small subset of the total cells (even though it can
be most of the volume), the efficiency of this approach is unim-
portant. Thus, we chose the conservative method to preserve mo-
mentum in these very tall cells that are likely to have large trunca-
tion errors. Moreover, conservative schemes are quite popular for
the two-dimensional nonlinear shallow water equations, which have
many similarities with our tall cells. We emphasize that conserva-
tion does not cure large truncation errors: it only makes the results
more physically plausible.

We begin by putting the velocity terms into conservation form using
∇ ·u = 0 to transform equation 2 into

ut +∇ · (uuT )+∇p/ρ = g.

Ignoring the pressure and force terms, we focus on the u component
of the velocity

ut +(u2)x +(vu)y +(wu)z = 0.

If we place a control volume around each face as shown by the
dotted lines in Figure 3e, then this equation can be rewritten to in-
dicate that the velocity is updated based on the fluxes across the
control volume faces, i.e.

u∗ = un +
∆t

∆x∆y∆z

6

∑
f =1

±Ff (4)

where the sign depends on which side of the control volume a flux is
on. The fluxes are computed by averaging the velocities to the con-
trol volume faces, and then using these average velocities to decide
on the upwind direction. The flux itself is constructed by multiply-
ing the upwind component of the velocity we are advecting, uup,
with the average values for the other components vav and wav:

Fu = ∆y∆zu2
up Fv = ∆x∆zvavuup Fw = ∆x∆ywavuup (5)

The v and w velocity components are treated similarly.

While this algorithm is straightforward on a uniform grid, a few
modifications are required for tall cells. For motivation, we point
out that we could refine the tall cells into a uniform grid, apply
the uniform grid method just discussed, and then re-coarsen. Al-
though this would be inefficient to implement directly, our approach
achieves exactly this result in an efficient manner. To simulate this
process of refining, advecting, and coarsening, we consider each
pair of adjacent minimal faces one at a time, apply equations 5
and 4 to the entire velocity profile to produce a piecewise linear
or quadratic u∗ on each side, and use equation 1 to reduce u∗ back
to a constant or linear profile. The fact that reducing each flux con-
tribution to u∗ separately has the same result as treating them all



Figure 7: The boat moving along a straight path (1500×300 horizontal resolution).

at once follows from the linearity of equation 1. As shown in Fig-
ure 8, the structure of the flux profile differs depending on which
component is being advected and in which direction.

For example, given two minimal u faces whose control volumes
intersect along the x direction, the averaged velocity profile uav will
be linear. If uav has constant sign, Fu has a single quadratic profile
(uup is linear) on the control volume face. If uav changes sign, we
split the control volume face into two sections with constant sign
and handle each section separately. Advection of u along the other
horizontal dimension w is similar.

Advecting u along v between distinct minimal u faces is simple
since the intersection is a single uniform control volume face. How-
ever, we must also account for flux between the top and bottom
samples of a linear profile. Averaging v to the middle control vol-
ume face produces a constant vav at every virtual control volume
face, so the flux profile Fv will be linear. The update of u∗ can be
simplified by noting that the net flux into every virtual uniform face
except for the first and last is constant, since it is the difference of
consecutive terms in a linear sequence.

Advection of the other horizontal velocity w is similar to that of u.
Advection of v along u or w is the same as for u except that the
flux profiles are linear instead of quadratic, and there is no need to
consider flux inside middle v faces since they are constant.

First order upwinding requires a CFL condition on the time step for
stability, namely ∆t max(|u|/∆x + |v|/∆y+ |w|/∆z)≤ 1. If a larger
time step is desired for the other parts of the algorithm, the upwind-
ing phase of advection can be subcycled for little extra cost since
it is only needed for a small fraction of the velocities. After ad-
vection, we refine/coarsen the grid. This is done before making the
velocity field divergence free, because velocity interpolation does
not preserve discrete incompressibility.

There are two issues with this advection method which we would
like to resolve with future work. First, instabilities sometimes ap-

u along v v along u v along vu along u
Figure 8: Advection fluxes (small blue circles) on minimal control
volume faces between adjacent velocity control volumes.

pear near sharp changes in bottom topography such as the walls
of the canyon in Figure 9. These can occur because the final u∗
values are not affine combinations of the starting velocities, since
averaging to control volume faces breaks discrete incompressibil-
ity. We avoided these instabilities by computing the total weight
used for each u∗ value, and dividing by this weight if u∗ would be
larger than an affine combination. Note that these weights can be
computed by applying the same advection algorithm to the constant
field 1 (i.e., substitute 1 for uup everywhere). This fix is far from
satisfactory, especially since the lack of discrete incompressibility
causes no problems for uniform grids. Second, while a first order
method is sufficient for bulk motion, it would be interesting to gen-
eralize the ENO and WENO schemes typically used for shallow
water to the case of tall cells to reduce numerical dissipation.

5.2 Laplace Equation

After advection, we solve for the pressure and make the velocities
divergence free via

∇ · (∇p/ρ) = ∇ ·u∗/∆t

un+1 = u∗−∆t∇p/ρ

for the entire collection of uniform and tall cells at once. Since vari-
able density flows do not have approximately linear vertical pres-
sure profiles, we assume that the density is spatially constant and
can be moved to the right hand side, i.e. ∇ ·∇p = ρ∇ ·u∗/∆t.

The component of the discrete pressure gradient on a MAC grid
face between two MAC grid cells p1 and p2 is ∂ p/∂ l = (p2 −
p1)/∆l where l = x, y, or z. This readily generalizes to arbitrary
configurations of tall cells, since we determined the placement and
structure of the velocities with pressure gradients in mind (Figure
3c,d). For the horizontal derivative, say in the x direction, con-
sider two adjacent tall cells extending from j1 to j2 and j3 to j4,
respectively, intersecting in a minimal face from ja = max( j1, j3)
to jb = min( j2, j4). If the corresponding pressures are p1, p2, p3,
p4, then the component of the discrete gradient on the face between
them is a linear profile with values (px)a and (px)b given by inter-
polating pressures to ja and jb in each cell and applying standard
central differencing, e.g.

(px)a =
1

∆x

(
j4− ja
j4− j3

p3 +
ja− j3
j4− j3

p4−
j2− ja
j2− j1

p1−
ja− j1
j2− j1

p2

)
and similarly for (px)b. The derivative between vertically ad-
jacent pressure samples p1 at j1 and p2 at j2 is simply py =
(p2− p1)/(( j2− j1)∆y).

The discrete volume weighted divergence of a uniform cell can be
written as

V (∇ ·u) =
6

∑
f =1

±u f A f

where the± sign is chosen based on which face is being considered,
and A f is the area of the face. We generalize this equation to tall



cells by computing the flux into each virtual uniform cell in the tall
cell, dividing each flux between the bottom and top samples in the
cell, and adding up the contributions. We divide the virtual uniform
fluxes using the same fractions used to interpolate pressures to the
given virtual uniform cell in order to ensure the symmetry of the
final system. For example, given a tall cell from j1 to j2 and a
minimal face from ja to jb with velocities ua and ub, the total flux
contribution from the face given to the upper portion of the cell is

jb

∑
j= ja

j− j1
j2− j1

(
jb− j
jb− ja

ua +
j− ja
jb− ja

ub

)
∆y∆z. (6)

while jb

∑
j= ja

j2− j
j2− j1

(
jb− j
jb− ja

ua +
j− ja
jb− ja

ub

)
∆y∆z.

is the contribution to the lower portion of the cell. The vertical flux
contribution is always v∆x∆z.

We can now combine the discrete volume weighted divergence and
gradient operators to discretize the Laplacian. For the horizontal
direction, to get the contribution from the minimal face from ja to
jb to the top portion of the cell, we substitute (px)a and (px)b for ua
and ub in equation 6 and collapse the nested interpolation to obtain

∆y∆z
∆x

jb
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j= ja

j− j1
j2 − j1

(
j4 − j
j4 − j3

p3 +
j− j3
j4 − j3
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j2 − j1

p2

)
and similarly

∆y∆z
∆x
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p4 −
j2 − j
j2 − j1

p1 −
j− j1
j2 − j1

p2

)
is the contribution to the bottom portion of the cell. Note that the
coefficient of p1 in the first equation (which is for p2) is identical to
the coefficient of p2 in the second equation (which is for p1). Since
all symmetric pairs of contributions to the discretization matrix are
identical, the final result is symmetric. The coefficients relating p3
to p4 are handled similarly. Moreover, the cross terms relating p1
to p3, p1 to p4, p2 to p3 and p2 to p4 are also similarly treated.
For the vertical terms, we obtain (∆x∆z/∆y)(p2 − p1)/( j2 − j1)
once again resulting in identical contributions for symmetric terms.
The resulting negative semi-definite linear system can be treated in
the same manner as a typical MAC grid discretization, i.e. precon-
ditioned conjugate gradients, incomplete Cholesky preconditioner,
Neumann and Dirichlet boundary conditions anywhere in tall or
uniform cells, etc.

6 Examples
We implemented our method in parallel using MPI by decompos-
ing the horizontal domain into a two-dimensional grid and giving
each processor one fixed rectangular piece of the domain. Before
every stage of the fluid solve that requires neighboring data, we fill
ghost cells on the sides of each processor from the boundary data
of its neighboring processors. In the pressure solve, each proces-
sor constructs an incomplete Cholesky preconditioner for the por-
tion of the grid that it owns, and participates in a global PCG solve
with a block diagonal preconditioner formed from the incomplete
Cholesky blocks on each processor. Extending the serial version
of the algorithm to use MPI was relatively straightforward since
the domain decomposition is applied only along uniform horizon-
tal dimensions, and the use of tall cells for the bulk of the fluid
significantly reduced the communication bandwidth required. All
simulations were run on a cluster of 4 processor 2.6 GHz Opteron
machines.

The boat simulations in Figures 1 and 7 used 16 processors in an 8×
2 grid. The optical depth was 1/5 the water depth and the cost was
approximately 3 minutes a frame. For the boat examples we used
vortex particles [Selle et al. 2005] and rendered removed negative
particles as in [Guendelman et al. 2005]. Figure 9 shows a river

Figure 9: Simulation of a river filling a canyon (2000× 200 hori-
zontal resolution).

simulation with varying bottom topography using 20 processors in a
20×1 grid. The computational cost was approximately 25 minutes
a frame, and the optical depth is illustrated in Figure 6. Memory
consumption was not a significant issue in any of the simulations.

7 Conclusion
We have presented a novel method for the simulation of large bod-
ies of water by combining two-dimensional and three-dimensional
simulation techniques. The bulk of the water volume is represented
with tall cells similar to a height field method, and a surface layer
of water is simulated with a state of the art, fully three-dimensional
Navier-Stokes free surface solver. This algorithm works well for
capturing detailed surface motion and for representing detailed bot-
tom topography. Our general philosophy is to use the best available
method in the surface layer where we expect interesting detail, and
to coarsen the mesh away from the interface for efficiency.

Like shallow water, our method only admits computational gains
for flows heavily dominated by gravity, where a large portion of the
water is in near vertical equilibrium against the ground. In general,
we believe that the best approach for any simulation is to start with
a uniform grid that captures the interesting flow features, coarsen
vertically using our method in areas where linear pressure profiles
are sufficient, and then refine uniform cells using an octree in areas
where more resolution is desirable. Finally, we note that the ef-
fects of bottom topography on the surface diminish with increasing
depth, and in the deep water limit the effects are negligible. How-
ever, we are interested in problems in the shallow water regime,
where tall cells are almost exclusively used.
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