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Abstract

Quasistatic and implicit time integration schemes are typically employed to alleviate the stringent time step re-
strictions imposed by their explicit counterparts. However, both quasistatic and implicit methods are subject to
hidden time step restrictions associated with both the prevention of element inversion and the effects of discon-
tinuous contact forces. Furthermore, although fast iterative solvers typically require a symmetric positive definite
global stiffness matrix, a number of factors can lead to indefiniteness such as large jumps in boundary conditions,
heavy compression, etc. We present a novel quasistatic algorithm that alleviates geometric and material indefi-
niteness allowing one to use fast conjugate gradient solvers during Newton-Raphson iteration. Additionally, we
robustly compute smooth elastic forces in the presence of highly deformed, inverted elements alleviating artificial
time step restrictions typically required to prevent such states. Finally, we propose a novel strategy for treating
both collision and self-collision in this context.

Categories and Subject Descript¢ascording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — Physically based modeling; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism — Animation

1. Introduction the use of semi-implicit (e.gBMFO03]), fully implicit (e.g.
[TF88h BW98]) and quasistatic (e.gHFS'01, MMDJO01])

time integration schemes. Quasistatic schemes ignore iner-
tial effects and thus are not suitable for simulating less con-
strained phenomena such as ballistic motion. However, in
applications where inertial effects are relatively small com-
pared to the deformation caused by contact, collision, and
time varying boundary conditions, quasistatic solvers can of-
ten provide a speedup of one to two orders of magnitude over
explicit schemes. For example, quasistatic simulations are
well suited for flesh deformation where the flesh is rigidly
attached to bones and heavily influenced by contact, colli-
sion and self-collision.

Fast and robust simulations of elastic solids are becoming in-
creasingly important in computer graphics applications due
largely to the prominence of virtual characters. Feature films
such as Van Helsing, Spiderman, The Lord of the Rings and
countless others benefit from the use of humanoid characters
in scenes that would be difficult and expensive if not impos-
sible to create with live actors, see e.gMGB04, ST04.
Typical models are composed of an underlying skeleton
whose motion is prescribed kinematically (from motion cap-
ture or traditional animation) and a mechanism for transmit-
ting the skeletal motion to skin deformation. Physics based
simulations of musculature and fleshy tissues are becoming
increasingly popular for producing these deformations, es-
pecially when virtual characters undergo contact and colli-
sion with the surrounding environment. Moreover, faithfully
depicting the artist's conception of the character requires
reasonably high resolution tetrahedral meshes placing addi-
tional demands for efficiency on the simulation algorithm.

Although implicit and quasistatic schemes remove the
time step restriction associated with wave propagation, the
Newton-Raphson method used to solve the resulting nonlin-
ear equations may produce inverted elements during itera-
tion when large time steps are used, bringing the algorithm
to a halt. For example, large displacement boundary condi-
Since explicit time integration schemes can often have strin- tions tend to invert elements unless steps are taken to dis-
gent time step restrictions, various authors have investigated tribute the effects to surrounding elements, and the typical
approach is to impose an artificial time step restriction even
in the quasistatic case. This has been discussed in both the
T email: jteran@stanford.edu computer graphics (e.gHFS01]) and the computational

+ email: {sifakidirving|fedkiw}@cs.stanford.edu physics (e.g.GWO03) literature. Even in the case where the
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try a fast iterative solver switching to a slower direct method
when it fails. HFS*01] discussed these issues in the context
of quasistatic simulation pointing out the erratic behavior of
conjugate gradient methods and a preference against direct
methods. By adding an artificial “viscosity” to their simu-
lations, they were able to obtain reasonable results with a
GMRES iterative scheme. In the context of implicit time in-
tegration, CK02] pointed out that extra damping forces such
as those applied irBW98, VT0Q] can help to overcome in-
definiteness, but not guarantee it. Furthermore, they point
out that this damping degrades the realism of the simulation.
Instead, they take a closer look at the problem in the case
of springs identifying compression as a source of indefinite-
ness and proposing a technique to guarantee definiteness in
the special case of cloth simulation with springs. A key con-
tribution of our paper is a new and general method for guar-
anteeing positive definiteness, thus allowing for the use of
fast conjugate gradient solvers under all circumstances (in-
cluding inversion) for arbitrary constitutive models in the
finite element framework. Our method modifies the search
path followed towards equilibrium without altering the set
of equilibrium solutions or the governing equations.

Figure 1: The particles of a tetrahedron mesh are randomly

scattered across a tenfold magnification of its bounding qu 2 Previous Work

and the object is subsequently evolved to steady state using

our robust quasistatic solver. From top to bottom and leftto  [TPBF87 TF88h TF884 pioneered deformable models
right the Newton iteration counts are 0, 1, 2, 10, 40, and 80. in computer graphics including early work on plasticity
The hands and feet are specified as boundary conditions. and fracture. Finite element simulations have been used
to model a hand grasping a balGMTT89], for vir-
tual surgery PDAOQY], fracture OH99 MMDJ01, OBHO02,
MBFO04], etc. Other work includes the adaptive frameworks
of [DDCBO01, GKS02 CGC'021], the rotation based ap-
proaches in IDM *02, MG04, CKO05] (see also TwW88)),
the bending models ilBMF03,GHDSO03, the precomputed

vation terms THMGO04], rotated linear model$G04], etc. ;afhaﬂguvf On4]models 00F0d, and the point based methods
However, these methods change or limit the underlying par- '

tial differential equation, whereaBI[F04] allows for general The construction of muscles and/or flesh deformation is im-
nonlinear constitutive models with forces that are smooth portant for computer graphics characters, and anatomy based
enough to be used in conjunction with iterative methods. modeling techniques of varying resolutions have been ap-
Thus, we adopt the approach ¢TF04] and extend it to the plied. WV97,SPCM97 used anatomically based models of
quasistatic regime removing the artificial time step restric- muscles, tendons and fatty tissue to deform an outer skin
tion required by other schemes making our solution method layer. NTHF0Z fit deformable B-spline solids to anatomic
extremely efficient. data in order to create volumetric, anisotropic representa-
tions of muscles and their internal structuresH503 used

a variety of techniques to model a human hand. More biome-
chanically accurate techniques for muscle simulation were
proposed in€Z92 HFS'01, TBNFO03, and a number of re-
searchers are working to simulate data from the NIH visible
human dataset, e. ZCK98 HFS 01, DCKY02, TBNFO0J.

final mesh will be inversion free, artificially small time steps
are required to ensure that every intermediate state consid-
ered during Newton-Raphson iteration is also inversion free
restricting the speed at which one can converge to the de-
sired solution. Recently, researchers have aimed at handling
inversion using altitude spring$/BTF03], volume preser-

In each Newton-Raphson iteration, the nonlinear system of
equations is reduced to a linear system that must be solved
to advance to the next iteration. This linear system is guar-
anteed to be symmetric and positive definite in the vicin-
ity of equilibrium states, enabling the use of fast conjugate
gradient solvers. Unfortunately, the use of large time steps
produces substantial divergence from a steady state, lead-Instead of creating an explicit model for muscle and fatty
ing to a symmetric linear system that is often indefinite. tissue, one can place an articulated skeleton inside the char-
State of the art finite element packages such as NIKE3D still acter skin and formulate correspondences between each ver-

use direct solvers such as that proposedliw§8d, even tex on the skin mesh and the various joints in the skeleton.
though such methods are much slower and require consid- This is typically called enveloping or skinning and can suf-
erably more memory than iterative methods\WO03 first fer from a number or artifacts especially near joints such as
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elbows and shoulders. A nhumber of techniques have been 4. Strain Energy
proposed to overcome these difficulties, see for example
[LCFOQ SRC01WP02 MGO03]. [ACP0Z used these tech-
nigues in conjunction with range scan data, akip4]
used them to model a human han§JP03 proposed a sim-
ilar method that used principal component analysis and a li- 02y
brary of deformations precomputed with nonlinear static fi- %2
nite element analysis. Although these techniques are fast and .
do not require one to build an underlying muscle model for That is, the global stiffness matrixdf/JX is alwayssym-
each character, they can lead to lower quality results than metric, as a result of the hyperelastic energy having continu-
full finite element simulations. A physically based approach ous second derivatives with respect to the spatial configura-
was taken inJP02 to add ballistic motion to character skins  tion. Furthermore, a steady state corresponds to a local min-
in otherwise kinematically constructed motior8GC*024 imum of the hyperelastic energy indicating that the energy
approaches this problem by embedding the character in a Hessiang2W/d%2, (or equivalently the global stiffness ma-
coarse finite element mesh which deforms rigidly with the trix) is positive definite in the vicinity of aisolatedsteady
bones, but obeys a linear finite element model locally to each state. Moreover, systems that possess steady states along a
bone. continuous manifold in configuration space, such as under-
constrained bodies with rigid degrees of freedom (e.g. a sin-
gle spring with only one fixed endpoint that is otherwise free
3. Quasistatic Formulation to rotate), still exhibit semi-definite stiffness matrices at their
steady state. Thus, such systems can be reduced to the fully
constrained case by factoring out the manifold of the config-
uration space that does not affect the hyperelastic energy.

For a hyperelastic material, the nodal forces can be defined
via the energy a$ = —dW/dX, and thus we can rewrite
equation {) as

% oV
k= — 35
R X

)

Xk

Using Newton’s second law of motion we can describe the
evolution of a deformable body using the equati@ns- v
andvy = M~1f(t, %, V) whereX, V andf denote the positions, o o )
velocities and aggregate forcesalf the nodes of the tetra- ~ Symmetry of the coefficient matrix in the linear syste®) (
hedral mesh. (We use as the vector valued position of a  allows for the use of symmetric solvers, and direct meth-
single node.M is the mass matrix, which is diagonal in our ~ 0ds are commonly used. However, the fact that the stiffness
lumped mass formulation. The nodal forces can be decom- matrix is positive definite close to the steady state suggests
posed into internal and external forcds= fint + fex, the that symmetric positive definite solvers such as the conju-

latter being supplied as time varying input to the simulation. gate gradient methothight be applicable. This would al-
leviate the drawbacks of direct methods including the need

We apply a quasistatic assumption that both the accelerationsig explicitly form the stiffness matrix, the memory demands
and velocities are zero to obtai(t,X,0) = 0 which states  jncurred by matrix fill during the direct solve, and the exces-

that the externally supplied time varying input must be bal-  sjye computational expense of direct solvers as opposed to
anced by the internal resistance of the material. In particular, jterative methods.

we use a nonlinear finite element method to solve for the in- - o o )
ternal forces, and thus we must invert a nonlinear equation OUr method modifies the coefficient matrix in equatiaj (
to find the time varying positiori&(t) at any timet. This is into a positive deflr_ntesymmetr!C mat_rlx and_ _proceeds to
accomplished with a Newton-Raphson iterative solver, and COMPute the next iterat&X, using this modified system.
each step towards the steady state solution begins with the Ve emphasize tha_lt _thls modlflcatlor! only alters individual
linearization of the nodal forces about the current solution St€PS towards a minimum of the strain energy and not those
estimatey, i.e. (X -+ A%) ~ f(Ry) + (8?/8)”()‘4 A% where minima themselves. These modifications are localized to re-
X gions of the simulation mesh that contribute to this indefi-
niteness. This practice of modifying the Hessian of the opti-
mization functional is common in the optimization literature
(see e.g.GMW81]) and is usually referred to as a modified

k
DXy = Xkr1 — Xk Since we desire force equilibrium with
f(Xky1) = F(Xk + AXk) = O, we solve the linear system

of -
- 3% DXy = T(Xk) 1) Newton method.
Xk
to find the next iterat@ ;. 5. Finite Element Forces

Although the quasistatic assumption does not apply to free We follow the notation of TBNF03, and their geometric
falling, unconstrained, lightly damped objects whose rich- interpretation of the finite element method. Consider a time
ness of deformation is largely enhanced by the effects of in- dependent mag from the undeformed material coordinates
ertia, it is a viable modeling strategy for a range of applica- X to world coordinatex. The stress at a poi® in the ma-
tions in which boundary conditions and external forces pre- terial depends on the deformation gradi€X) = dx/dX
dominantly determine the material state (e.g. skeletal mus- of this mapping. We use constant strain tetrahedral elements
cles under a variety of conditions). whereF is a constant % 3 matrix in each tetrahedron. We

(© The Eurographics Association 2005.



Teran et al. / Robust Quasistatic Finite Elements and Flesh Simulation

T —— of any reflections in the orthogontl andV. This requires
the negation of the smallest singular valuecdr inverted
tetrahedra. Combining the rotational invariance of the first
Piola-Kirchoff stress with the diagonalization of the defor-
mation gradient yields

o P(F) = UP(UTFV)VT = UP(F)VT 3)

whereP(F) is also diagonal for isotropic materials. This fac-
torization is particularly convenient, because it allows for a
simple extension of the constitutive model to inverted ele-
ments in a smooth manner. That is, one only needs to modify
the diagonaP(lE) to be valid for a single negative entry in
the diagonaF. For more details, se¢TF04].

6. Element Stiffness Matrix

The global stiffness matrix in equatiord)(is constructed
from the additive contributions of the element stiffness ma-
trices, —df /dx, which are based on contributions from in-
dividual tetrahedra. As a result of this additive decomposi-
tion, definiteness of the element stiffness matrices is a suffi-
cient condition for definiteness of the global stiffness matrix.
Motivated by this fact, we manipulate the element stiffness
matrix to ensure global definiteness. In sectbwe show
that this elemental manipulation amounts to the solution of a
single 3x 3 symmetric eigenproblem and a few simple alge-

define edge vectors for each tetrahedron in both material co- braic operations. In contrast, dealing with the global stiffness

Figure 2: lllustration of large deformation in conjunction
with collision. The hands and feet are set as boundary con-
ditions for the first row, but only the feet are fixed for the
middle and bottom rows.

ordinatesdm, = X1 — Xg, dm, = X2 — Xo, dm, = X3 — X0, matrix directly can be prohibitively expensive, especially if
and world coordinates)s, = X; — Xo, ds, = X2 — Xo, ds, = eigenanalysis or Cholesky factorization of that matrix is re-
X3 — X0, and construct % 3 matricesDm, and Ds using the quired, as in most standard approaches to treating locally
edge vectors as columns. Ther= DsD;;!, andD;;L is con- indefinite optimization problemsgMWa1].

stant and can be precomputed and stored for efficiency. In order to establish the positive definiteness of the element

For hyperelastic materials, stress is defined as the derivative stiffness matrix, we must ensure théx ™ (—of/9x)8x =
of a strain energy typically constructed from various strain —8x" 8f > 0 for any incremenéx. Using the formulas from
invariants, and we use the first Piola-Kirchhoff stress which the last section and some tensor manipulations yields

is the gradient of the strain energy with respect to the de- 3 3 3

formation gradient? = 0W/JF. P maps area weighted nor-  §x' §f = Zlaxingi _ SXE Zlégi - Zl(gxi _ 6xo)T 50
mals in material space to forces in world space. The force i= i= i=

on a nodei due to a single tetrahﬁdronhincident tohit is = 8Ds: 86G = tr[6D] 6G] = —V1r[6D{ 6PD"]

gi = —P(A1N1+ AsNo + A3N3) /3, where theA;N; are the T enT T .

area Wegghted normals of thg/faces of the te]trej\hedron ingi-  — VIf[Dm’ 8D5 8P| = ~VIr[3F " 6F] = —V (SF : 5P).
dent to node. Since these do not change during the simula- Since the material element volunveis always a positive

tion, we can precompute a vectarsuch thaig; = Pb;. For constant, the positive definiteness condition reduceito
efficiency, we computgp = — (g1 + 92+ g3) and compactly 6P > 0 or 6F : (dP/JF) : 8F > 0. Therefore, the positive
express the other thregeasG = PBy, whereG = (g1, 02,03) definiteness of the element stiffness matrix is equivalent to
andBm = (b1,by,bs) = =VD;;" with V the volume of the the positive definiteness of the fourth order tengByJF.
tetrahedron in material space. This result is in direct analogy with the energy based formu-

lation of the Newton-Raphson iteration syste®j 6ince by

As noted in [TFO04], the first Piola-Kirchhoff stress is in- definitionP — 9W/aF and thus)P/oF — 92 /IF2.

variant under rotations of either material or world space for
isotropic materials. Furthermore, the deformation gradient
can be transformed into a diagonal matéxwith an appli-
cation of a material and a world space rotatibns UFVT.
This decomposition is obtained from the standard singular Testing and enforcing positive definiteness of the fourth or-
value decomposition df along with the subsequentremoval  der tensoWP/JF directly can be rather unwieldy. Instead,

7. Diagonalization
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2T

Figure 3: Simulation of qua5|stat|c flesh deformation driven by a kinematic skeleton.

we start as inI[TF04] by rotating both stresses and defor-  derived in sectior6 is equivalent to positive definiteness of
mations into diagonal space (transforming our configuration (dP/dF)|s. We might expect that applying the rotations that

using the rotation matrices that diagonalize the curfFeard diagonalize the current deformatiéhto 6P and 6F would
P). In order to do this, first note th&P = (dP(F) /IF)|g : induce a simple structure for the tens@P/dF)|¢. In fact
6F where we explicitly stress the dependencyain F with this tensor turns out to have a block diagonal structure in the
P(F). We can manipulate this equality into case of isotropic materials.
JUP(UTFV)VT
P = # :8(UTFV)
JUTFV) g 8. Enforcing Positive Definiteness
JdP(F
=U { % : UTSFV}VT In order to reveal the block diagonal structurg(8P/JF )|z,
UTFV we rewrite the 3x 3 x 3 x 3 fourth order tensor as a
_ U{ oP . UT6FV}VT (4) 9 x 9 matrix. To do thi_s, we consider the rearrange-
JoF |¢ ment of a 3x 3 matrix S into the 9x 1 vector
where the first equality comes from equatid@) and re- (811, S22, $33, S12, 21, S13, 31, 23, S32) - We can then represent

placing 6F with a rotated version, the second comes from (9P/dF)| as the 9< 9 matrix that maps the vector equiva-
a change of variables and the fact thhandV are chosen lent of 6F to the vector equivalent @fP. For isotropic mate-
independent oF, and the third comes from choosihand rials this matrix is block diagonal with diagonal components
V to be the rotation matrices that diagonalize the initial value A+ B12, Biz andBzz where

of F, i.e. where we evaluat#P/JF to linearize for iteration.

. . o o1+ Pfu+nt N2 T3 Ca.
Also in the last equality, we drop the explicit dependence of a — Yo oo+ Poot 12 o3 Bij = {om Bij }
PonF. 73 Y23 Q33+ Psz+ a3 Pi i
Equation @) provides all the information we need for solv-  Here,
ing the Newton-Raphson iteration system using a conjugate —
gradient solver, since the nodal force differentials can read- aij = 2¥) +4(c; =+ 0j Wi
ily be computed from the stress differentialsés = 6 PB,.

Furthermore we have 201 Wy,
Bij = 4oiojW)| — ———
JoP T T Oj0j
6P:6F = Uq —| :U'O6FV V' :6F
oF |¢
oP 20j
—uT T 2
U'SFV: 5F F.U SFV " (20 4(73 2(|,” )a 0V ; 4O_j3 +4|||'~|J|||
‘ [0, 6i0j
illustrating that the condition for definitenes¥? : 6F > 0, (. ) %

(© The Eurographics Association 2005.



Teran et al. / Robust Quasistatic Finite Elements and Flesh Simulation

whereW = W(1,11,111') is the strain energy written in terms
of the invariantd =tr C, Il = C: C andlll = detC with

C = FTF and subscripts representing partial derivatives.
Also, o1, 62 and o3 are the diagonal components that con-
stituteF.

Positive definiteness ofdP/dF)|g is equivalent to positive
definiteness of each of the blocks B1,, B13 andBy3. For

A a simple 3x 3 diagonalization is required, followed by
the clamping of all negative eigenvalues to zero. For thke 2

2 matricesB12, B13 andBy3 no eigenanalysis is necessary
since the negative eigenvalue, if present, can be clamped to
zero analytically.

Our algorithm computes the stress differendiBlas outlined

in equation 4). First we compute the rotated deformation
differentialUT §FV, and then convert this:33 second order
tensor into a % 1 vector and multiply it by the & 9 matrix
for (dP/dF)|g to carry out the contraction. Of course, we
use the clamped positive definite version(@P/dF)|z. The
result is then converted from a-91 vector back to a & 3
second order tensor, before being premultipliedbyand
postmultiplied byvT.

Figure 4: lllustration of self-collision handling.

the equations without artificial limits on the allowable time
step, we adopt the approach &TF04] smoothly extend-
ing the definition of forces past a maximum compression
threshold. Constant, linear, or smoother extrapolations can
be used for this purpose. In our work constant extrapolation
proved to be both simple and sufficient. To implement con-
Since we clamp eigenvalues to zero, the element stiffness stant extrapolation we threshold the diagonal valudsanid
matrices are only positive semi-definite, not positive defi- compute both forces and force differentials using the thresh-
nite, which raises the issue of whether the resulting global olded deformation gradient. The resulting force differentials
stiffness matrix could be semi-definite or ill-conditioned it- are then treated for indefiniteness.

self. In practice, the additive contributions of neighboring

elements and boundary conditions always lead to a positive o

definite global stiffness matrix, even for configurations as 10 Collisions

extreme as shown in Figufie (Note that oneouldclampto  gqr yolumetric collisions one could use the method in
a small positive value as well.) The effect of boundary condi- [BFA0Z] applied to the triangulated boundary surface of the
tions on the definiteness of the stiffness matrix is analogous tatrahedron mesh as was donelifF04). There is also the

to that observed in the matrix resulting from the discretiza- self-collision untangling strategy oBJVKO03]. But we pre-

tion of the Poisson equation. When all Neumann bound- e 5 penalty based formulation that can more readily be in-
ary conditions are specified, the resulting matrix is posi- ¢qrporated into the quasistatic formulation. We use a penalty
tive semi-definite. In this case a special version of Conju- torce for collision of our objects with themselves, other de-
gate Gradients is still applicable, since an analytic descrip- formaple tetrahedral bodies and rigid bodies. As a conse-
tion of the null space is available and, similarly, the global quence of using penalty forces, the steady state may ex-
stiffness matrix of an elastic object has a null space corre- pjp;¢ slight interpenetration of the colliding surfaces, an ef-
sponding to global translation and linearized rotation. Speci- tact that is rather subtle and acceptable for our line of ap-

fication of one or more Dirichlet boundary conditions makes plications. The penetration depth can also be adjusted by
the Poisson matrix strictly positive definite, with positional changing the stifiness of the penalty forces. A penetrat-
constraints having the same effect on the definiteness of theing node receives a force in the form of the gradient of a

global stiffness matrix for elasticity. penetration potential defined &y(x) = k¢?(x)/2 where

¢ is the signed distance to the surface of the object for
X interior to the body and zero otherwise. Then the force
is fp = —k¢(x)0¢(x), and the force differential i$fp =
Typically, realistic constitutive models have infinite strain  —k(d¢(x)d¢T (x) + ¢ (x) 62¢/<9x2|x)5x. These forces can
energy as the volume of an element approaches zero, and thiscorrupt the definiteness of the linearized forces used with
discourages element inversion when the equations of motion Newton-Raphson iteration. The potential for indefiniteness
are integrated with a small enough time step to resolve the arises from isocontours of the signed distance function with
stiff material response. Nevertheless, each Newton-Raphsoncurvatures of differing sign, see e.gA$96. These curva-
iteration of a quasistatic solver begins with a linearization of tures are the eigenvalues 8¢ /dx2, and we assure defi-
the elastic forces after which only a finite amount of energy niteness by projecting this matrix to its positive definite com-
is required to invert the element. In order to efficiently solve ponent in the case of rigid body collisions. For deformable

9. Inverted Elements
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object collisions, we omit the last term altogether. As before,
this modification does not change the equilibrium states,
only the convergence path towards one of these states.

We take a level set approach (see e@f~03) to computing
penetration depth as dié[01, MACO04], but instead of up-
dating the level set function as the object deforms we utilize
a static level set in material space ashi+5"01]. However,
many key aspects of our algorithm are significantly differ-
ent than that proposed itHFS*01]. For each rigid and de-
formable object in the scene, we first precompute a signed
distance function on a uniform Cartesian or octree grid as
in [GBFO3. This representation is computed in object space
for rigid bodies and material space for deformable bodies

and is not updated as the simulation progresses. Collecting : ‘“? 3\

the depth, normal and curvature information is straightfor- Figure 5: Quasistatic simulation of the upper torso muscu-
ward for rigid bodies, but we propose a novel approach for |5¢,re.

deformable tetrahedral bodies.

to push points out of the object, which is important because

To compute point collisions against deforming tetrahedral ;s s ynjikely to give us the proper directions for deformed
bodies, we maintain a bounding box hierarchy for the tetra- qe0ts Instead, we merely use the level set to find a point

hedra in each body. Then for each point, we use this hierar- 4, is tryly on the surface of the object. Then the distance
chy to find any tetrahedra that our candidate point may lie from xs to x and the vector pointing between them are used

inside (inverted tetrahedra are ignored as they represent neg+, computeg (x) and g (x) for the penalty forces and dif-
ative space). For each tetrahedron, we compute the baryceng antials.

tric coordinates of our candidate point to determine if the

point is either inside or very close to the tetrahedron in ques-
tion. We do not require robustness here as this computation 11. Examples
is not used to determine whether a point is inside an object,

but instead the barycentric coordinates are used to transform
the point from world space to material space, i.e. the point

is placed in material space keeping its same barycentric co-
ordinates but using the nodal positions of the material space
tetrahedron.

We demonstrate the applicability of our quasistatic algo-
rithm in a number of complex scenarios. To illustrate the
robustness of the extension of the elastic response to de-
generate and inverted elements, we solve for elastic equi-
librium with an armadillo mesh whose vertices are initially
randomly distributed on a cube ten times the size of the
Then the material space position of the point is used to armadillo mesh itself and whose hands and feet are con-
query the material space level set to see if the point is in- strained. Figurel shows a number of iterates in the solu-
side the object, and if so the local unit normal and level set tion process towards equilibrium. Figué&lemonstrates our
value are used to estimate the closest point on the surface asalgorithm for deformable collision detection and response.
Xc =X —@N (whereg is negative inside the object).¢f# 0 In the simulation, the hands are held fixed while the feet
atx. this equation can be iterated on to findxaras close to twist on the ground plane causing the legs to self-collide. To
the zero level set as is desired. Before the simulation begins, demonstrate rigid body collisions, we deform the armadillo
we also precompute a static bounding box hierarchy for the mesh with rigid cylinders as seen in figu2e The interac-
triangles on the surface of the object, and this is used to find tions with the cylinders demonstrate the time coherency of
the triangle closest t&; as well as the barycentric coordi- the strain energy local minima achieved by using the pre-
nates of the point on this triangle closestxto Before pro- vious equilibrium state as an initial guess for the Newton-
ceeding, we check to make sure that the local level set value Raphson solver.

at this point on the triangle, is larger than that at the orig-
inal pointx, to ensure thax; is actually farther outside the
object tharx. This keeps us from incorrectly pulling points
back towards the object (nonphysical stickiness), because of
rasterization errors with the level set function that cause it to
have a slightly different approximation to the object surface
than as given by surface triangle mesh. Finally, the barycen-
tric coordinates ok; are used to find the corresponding point
in world spacexs, on the surface of the deforming object.

Inertia effects are neglected when simulating quasistatic
elasticity, and deformation is primarily driven by external
time dependent forces due to contact, collision and bound-
ary conditions. As a result, quasistatic simulations are par-
ticularly well suited for flesh deformation where the flesh is
rigidly attached to bones and heavily influenced by contact,
collision and self-collision. We demonstrate the applicability
of our approach with several simulations of flesh and mus-
cles in the upper torso, derived from the visible human data
In this fashion, we do not use the level set in material space set as inTSSB05].

(© The Eurographics Association 2005.
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In figure 3, we attach the deformable flesh directly to the un- 12. Conclusions
derlying skeleton. The flesh naturally deforms from the in-
fluence of the skeleton as well as from self collision, provid-
ing realistic deformation and wrinkling of the outer skin. The
flesh mesh consists of 600 thousand tetrahedral elements an
was simulated with a neo-Hookean constitutive model ex-
tended to the inverted regime as IMF04]. Figure5 shows
skeletal muscle in the upper limb simulated with the mus-
cle constitutive model outlined inTF04] and [TBNF03.
Although our quasistatic formulation was only presented for
isotropic materials, it is readily extended to the case of sim-
ple transverse isotropy, since the strain energy is a sum of an
isotropic and a transversely isotropic component with each
term being a function of their respective associated invari-
ants. This property leads to a stiffness matrix which is a sum
of an isotropic term (which can be processed in the standard 13. Acknowledgements

fashion) and a simple anisotropic term whose eigenstructure Research supported in part by an ONR YIP award and

is easy to manipulgte. The resulting simulations are enriched a PECASE award (ONR N00014-01-1-0620), a Packard
by rlnuscle. activations that are compgtgd from thg skeletal Foundation Fellowship, a Sloan Research Fellowship,
motion as in ESSB*OS] to produce realistic contractile mo- o N00014-03-1-0071, ONR N00014-02-1-0720, ARO
tion. Finally, figure6 shows a layered approach where e, Ap19.03-1-0331, NSF 11S-0326388, NSF ITR-0205671
use.the simulated m(.)t.lon of the skeletal muscles as kine- and NIH U54-GM072970. E.S. was supported in part by a
r_natlc boundary cond|t|9n§ for a second flesh only SImu_Ia- Stanford Graduate Fellowship, and G.l. was supported in
tlon_to create more r_eallstl_c muscle based skin deformatlon. part by a National Science Foundation Graduate Research
During the second simulation, flesh nodes are constrained to Fellowship. We would like to thank Mike Houston, Christos

Igllow the lmuksclletnlmtlofn if they are within a tolerance of Kozyrakis, Mark Horowitz, Bill Dally and Vijay Pande for
€ musculoskeletal surtace. computing resources.

We presented a framework for efficient and robust quasista-
tic simulation of nonlinear elastic materials using a modified
d\lewton-Raphson algorithm that can robustly iterate through
configurations that give rise to mesh inversion and buck-
ling instabilities. Fast conjugate gradient solvers can be used,
since we enforce positive definiteness of the modified linear
equilibrium equations at each iteration. This simulation tech-
nique is ideal for constrained objects influenced by the mo-
tion of their specified boundary conditions. In particular, it
is useful for simulating deformable flesh and skin for virtual
characters whose motion is driven by an underlying kine-

matic skeleton.
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Figure 6: lllustration of a layered approach where the results of a quasistatic muscle simulation are subsequently used to drive
a quasistatic simulation of the outer flesh.
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