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Abstract

Although mesh-based methods are efficient for simulating simple hyperelasticity, maintaining and adapting a
mesh-based representation is less appealing in more complex scenarios, e.g. collision, plasticity and fracture.
Thus, meshless or point-based methods have enjoyed recent popularity due to their added flexibility in dealing
with these situations. Our approach begins with an initial mesh that is either conforming (as generated by one’s
favorite meshing algorithm) or non-conforming (e.g. a BCC background lattice). We then propose a framework
for embedding arbitrary sample points into this initial mesh allowing for the straightforward handling of col-
lisions, plasticity and fracture without the need for complex remeshing. A straightforward consequence of this
new framework is the ability to naturally handle T-junctions alleviating the requirement for a manifold initial
mesh. The arbitrarily added embedded points are endowed with full simulation capability allowing them to col-
lide, interact with each other, and interact with the parent geometry in the fashion of a particle-centric simulation
system. We demonstrate how this formulation facilitates tasks such as arbitrary refinement or resampling for col-
lision processing, the handling of multiple and possibly conflicting constraints (e.g. when cloth is nonphysically
pinched between two objects), the straightforward treatment of fracture, and sub-element resolution of elasticity
and plasticity.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.3.7 [Computer Graphics]: Animation

1. Introduction

Simulation of deformable models was pioneered in com-
puter graphics by [TPBF87,TF88a,TF88b]. It has influenced
research in cloth animation [BW98], muscle and face sim-
ulation [TSSB∗05, SNF05], flesh deformation [CGC∗02b],
virtual surgery [SHGS06] and fracture [OH99].

Mesh-based methods require the generation of an initial
simulation mesh, which can be conforming (e.g. [MBTF03,
ACSYD05]), or non-conforming when used in conjunction
with an embedded simulation technique (e.g. [CGC∗02a,
CGC∗02b, MBF04, MG04, MTG04]) in which case a sim-
ple cube or BCC background mesh can be used. Gener-
ation of a conforming simulation mesh is typically non-
trivial and is best suited to applications that require no
changes to the initial mesh. However, if the mesh needs to
be adapted on the fly, e.g. for fracture [OH99], remeshing
can be prohibitively expensive and can introduce poor qual-
ity elements. [MBF04] proposed a partial solution that uses
embedded simulation technology to fracture tessellated ob-
jects without continuous remeshing, allowing elements to be
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modeled as partially full of material. Limitations, including
the restriction that edges cannot be fractured twice, prevent
this method from being completely general. Collision pro-
cessing can often require more surface resolution than is
present in the initial simulation mesh. While some have con-
sidered adaptive frameworks [DDCB01,GKS02,CGC∗02b],
it is wasteful to refine the full volumetric mesh in the vicin-
ity of the boundaries solely for collisions. Although not as
efficient as mesh-based methods for the simulation of elastic
deformation, point-based methods provide added flexibility
making them attractive for applications involving fracture,
virtual surgery, resampling for collision handling, etc., see
e.g. [MKN∗04, PKA∗05, SOG06, WSG05, MHTG05].

Starting with either a conforming or non-conforming
mesh, we propose a method for embedding an arbitrary point
in this mesh. We call this a hard binding. To derive the rela-
tionships between physical quantities of the embedded point
and the mesh, we start by considering a hypothetical re-
finement of the mesh that resolves the embedded point. We
compute internal finite element forces for these hypothetical
subelements and illustrate how to redistribute these forces to
the parent mesh. The mass of the embedded particle is re-
distributed to the parent mesh as well. This redistribution is
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Figure 1: Parent particles (blue), hard bound target loca-
tions (red) and soft bound particles (yellow). Soft bound du-
plication of a hard bound target location (left), and three soft
bound duplications of parent particles (right).

shown to be independent of the chosen refinement. Notably,
this approach results in automatic and natural handling of T-
junctions, as masses and forces of T-junction nodes can be
redistributed to the parent mesh. This specific handling of
T-junctions is similar to that in [LC06]. We then generalize
this approach to arbitrary embeddings. Hard bound particles
have their mass and any forces or impulses applied to them
redistributed to the parents in a natural fashion while main-
taining the notion of an effective mass so that they can fully
participate in various numerical algorithms.

A hard binding constrains an embedded particle to its
barycentrically determined location (a similar heuristic was
given in [GBT06]). Thus, hard bound particles are not par-
ticles at all (i.e. they do not possess any degrees of free-
dom), but merely target locations that live on the parent
mesh. In order to transition to a fully particle-centric sim-
ulation framework, we create the notion of a soft binding. A
soft binding is an abstract connection between a real parti-
cle with full degrees of freedom and a hard binding target
location enabling full two-way interaction. Soft bound parti-
cles are free to interact with each other and the parent mesh
constituting a fully particle-centric framework. Soft bindings
can be created between any particle and any target location
even duplicating the original degrees of freedom in the mesh
itself (see figure 1). The soft binding mechanism is respon-
sible for the two-way interaction between the particle-based
system and the mesh-based framework. Although one could
implement this connection using simple springs, we have de-
signed a more sophisticated soft binding interface which is
notably fully implicit allowing one to stiffen the two-way
interaction to the point where the soft bound particle always
lies on its target location up to numerical precision, without
stability issues or additional time step restrictions.

Our work shares the motivation of [GBT06] to incorporate
particle constraints in the simulation of deformable objects,
and the function of their geometric constraints is conceptu-
ally analogous to our hard bindings. However, their approach
works by introducing external forces dependent on the inte-
gration method used whereas our hard bindings are enforced
through the conjugate operations of force distribution and
velocity interpolation. That is, instead of forcing our con-
strained degrees of freedom toward their target locations, we

Figure 2: Resolution of hard bound particles (depicted in
red) via refinement of the parent element.

directly project them out of the equations of motion. This
allows seamless incorporation of such constraints into any
time integration scheme, including globally coupled implicit
schemes. Another major difference is that our framework al-
lows optional drift of particles away from their target loca-
tions through soft bindings.

Novel contributions of our work include the tight inte-
gration of hard binding constraints and unconditionally sta-
ble binding spring forces into the semi-implicit Newmark
time integration scheme, lag-free duplication of degrees of
freedom through soft bindings by force transfer from par-
ent particles, and integration of rigid/deformable coupling
into the Newmark scheme and conjugate gradient solver. We
present these contributions as part of a broad hybrid simu-
lation framework building on simple, physically motivated
principles. We demonstrate the features of this framework
with examples that include dynamically adapting the surface
sampling density for collisions, duplicating parent mesh par-
ticles to resolve conflicting constraints caused by the non-
physical pinching of cloth, the facilitation of fracture and
cutting algorithms, and an extension of our framework to
two-way interactions with rigid bodies.

2. Hard Bindings

The simulation mesh is subject to internal forces, from for
example finite elements, as well as external forces from
gravity, friction, collisions, etc., and we want these forces to
act on the hard bound particles as well. We motivate our ap-
proach for propagating forces to the parent mesh by consid-
ering a refinement that resolves all the hard bound particles.
Figure 2 shows three hard bound particles along with an as-
sociated refinement. Although this refinement is not unique,
it turns out that the propagation of physical properties from
the hard bound particles to the parent mesh is independent of
the tessellation used and can be performed without explicitly
refining the parent element. Internal forces are defined on
the subelements in standard fashion, but must be remapped
to the parent particles since the hard bound particles are not
free to move independently.

Conservative forces can be defined in terms of the gradi-
ent f = −∂Ψ(x)/∂x of the potential energy Ψ(x). The po-
tential energy of the parent triangle is Ψ = ∑Ψi, where Ψi
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Figure 3: (Left) A coarse deformable ball is penetrated by a
kinematic sphere. (Center) Sprinkling hard bound particles
on the surface of the sphere allows one to resolve the colli-
sions without requiring refinement of the tetrahedral simula-
tion mesh. (Right) Hard bound particles can be dynamically
added and removed based on proximity to collision objects.

is the potential energy of subtriangle ti. Each Ψi is naturally
defined in terms of the positions of the vertices of triangle ti
rather than the positions of the parent particles, although the
former are fully determined by the latter through the bind-
ing constraint. Let xi denote the positions of the vertices
of triangle ti, e.g. x2 is composed of the positions of par-
ticles {x2,x5,x6} in figure 2. The parent triangle vertices
{x1,x2,x3} are represented by x. Using this notation, the
three forces on the parent particles are

f =−∑
i

∂Ψi

∂x
=−∑

i

(
∂xi

∂x

)T
∂Ψi

∂xi
= ∑

i

(
∂xi

∂x

)T

fi (1)

where fi = −∂Ψi/∂xi are the three vertex forces computed
on each subtriangle ti. The Jacobian ∂xi/∂x is constant for
each triangle ti and contains the barycentric coordinates of
xi with respect to the vertices x of the parent triangle. Equa-
tion (1) can be extended to the computation of elastic force
differentials for implicit or quasistatic time integration via

δf|
δx = ∑

i

(
∂xi

∂x

)T

δfi|δxi
(2)

Equation (2) is obtained by taking the directional derivative
of (1), assuming that the Jacobian ∂xi/∂x is constant (i.e.
the binding constraint is linear), which is always the case
for the barycentric embeddings used here. Nonlinear binding
constraints would result in additional terms in equation (2).

From equations (1) and (2) we can write the net force and
force differential on a single parent particle as

fk = ∑
ti

∑
x j∈ti

w j
k f i

j and δ fk|δx = ∑
ti

∑
x j∈ti

w j
k δ f i

j

∣∣∣
δxi

(3)

where w j
k is the barycentric weight of particle j with respect

to particle k of the parent triangle and f i
j is the force on par-

ticle j from subtriangle ti. In practice we implement equa-
tion (3) by accumulating all forces on both parent and hard
bound particles from all their incident elements and subse-
quently redistributing the force on each hard bound particle
to its parents weighted by its barycentric weights. Note that
the final force distribution does not depend on the tessella-
tion used but only on the barycentric weights of the hard
bound particles.

We use equation (3) for velocity dependent damping
forces as well noting that it preserves the symmetry and def-
initeness of the linear damping forces allowing for our semi-
implicit time integration framework. We consider the linear
damping model f̄ = Ḡv̄ where Ḡ is symmetric negative def-
inite, and the force f̄ and velocity v̄ refer to all particles, in-
cluding hard bound particles. The velocities of this extended
set of particles are expressed in terms of the velocities of the
parent particles, v̄ = Wv. Using this notation, equation (1)
reduces to f = WT f̄ = WT ḠWv = Gv where G = WT ḠW
preserves both symmetry and negative definiteness of the
original damping matrix Ḡ. A similar derivation shows that
the distribution scheme for force differentials given in equa-
tion (3) preserves symmetry and negative definiteness of the
elastic stiffness matrix, which is an important property for
schemes that use an implicit or quasistatic treatment of elas-
tic forces as well.

After forces have been computed and redistributed to the
parent particles, accelerations are computed via a = M−1f
where M is diagonal in a typical lumped mass formula-
tion. We store the lumped masses of the parent particles in
a vector m, which is the diagonal of M. In analogy to our
force derivation, we write the mass vector as the gradient of
total momentum with respect to velocity, i.e. m = ∂P/∂v.
Let m̄ be the masses of all particles. As is typical, one
could compute the initial mass of hard bound particles by
refining the parent mesh as in figure 2 and assigning one
third the mass of each triangle to its vertices, although any
scheme for assigning mass (including uniform mass) is al-
lowed. The total momentum is then given as P = m̄T v̄, thus
m = ∂

∂v P = ∂

∂v

(
m̄T v̄

)
= ∂

∂v

(
m̄T Wv

)
= WT m̄ indicating

that masses of hard bound particles should be redistributed
to the parents based on the barycentric weights, i.e. the same
as for force redistribution. More generally in a non-lumped
mass formulation, the mass matrix is given by the Hessian
of the kinetic energy as M = WT M̄W (see [Sif07]).

Although hard bound particles have no mass or momen-
tum, an effective mass is useful for many numerical algo-
rithms. We define the effective mass as the ratio of an applied
force to the resultant acceleration of the hard bound particle,
i.e. fe = meae. Denoting the binding weights by wi, the ap-
plied force is distributed to the parent particles via fi = wi fe
and the acceleration of the bound particle is ae = ∑wiai.
Combining these equations gives

fe
me

=ae=∑wiai=∑wi
fi

mi
= fe ∑

w2
i

mi
⇒ 1

me
=∑

w2
i

mi
(4)

The effective mass is used in the determination of stability
restrictions for forces defined on the hard bound particle, e.g.
if a hard bound particle is connected to a spring, the effective
mass would be used to compute the harmonic mass.

One often needs to apply impulses to hard bound par-
ticles, e.g. for collisions. An impulse je applied to a hard
bound particle is the result of a force fe acting on the parti-
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Figure 4: Two levels of non-graded red refinement leading
to T-junctions (red). The T-junctions do not have a complete
one-ring of triangles. Our framework treats the T-junction
nodes as hard bound particles (red) embedded in the parent
mesh (blue).

cle for an infinitesimal interval ∆t, i.e. je = fe∆t, and from
equation (3) we obtain ji = wi je. Furthermore, changes in
velocity are governed by ∆vi = ji/mi = wi(me/mi)∆ve, and
displacements follow ∆xi = wi(me/mi)∆xe assuming that
∆xe = ∆tve.

Figure 3 illustrates the utility of hard bindings in pro-
cessing collisions. A typical approach to collision process-
ing (due to its simplicity) is to collide the points (possi-
bly only the surface points) of a deformable object with
implicitly represented collision geometry, and we collide
each tetrahedral mesh node from the sphere’s surface with
the ground and the kinematically controlled red sphere. Al-
though ground collisions are sufficiently resolved, the kine-
matically controlled red sphere passes directly through the
deformable object, missing any potential collisions with sur-
face particles. Although one might adaptively refine tetra-
hedra near the colliding red sphere, this increases the total
tetrahedra that need to be simulated and the smaller edge
lengths lead to a stiffer time step restriction. Our hard bind-
ing framework allows us to simply sprinkle particles on the
surface of the sphere at a higher density than the tetrahedral
mesh for the sake of collisions. This can be done statically
or even adaptively based on proximity to collision objects
(similar in spirit to [GD04]).

2.1. T-junctions

Figure 4 depicts four coarse triangles undergoing up to two
levels of non-graded red refinement leading to a number
of T-junctions. Structured adaptive meshing schemes such
as [MBTF03] resolve these T-junctions via a combination of
red and green refinement. This produces both more elements
increasing computational cost as well as lower quality green
elements which adversely affect the time step restriction.
Additional savings may be realized by exploiting the reg-
ularity of adaptive red-only refinements where all elements
in the mesh are identical up to rotation and scaling requiring
only the storage of a scale factor per element to encode the
rest state. For every T-junction, we compute its parents by
recursively tracking the endpoints of refined segments. This
leads to the barycentric embedding of hard bound particles

Figure 5: An elastic sheet meshed with T-junctions is qua-
sistatically stretched without bindings (top) and using hard
bindings (bottom).

on segments or triangles in two spatial dimensions, and on
segments, triangles or tetrahedra in three spatial dimensions.
Figure 5 illustrates that the straightforward simulation of a T-
junction mesh leads to gaps in the mesh (top), while treating
T-junction particles as hard bound particles properly con-
strains them to their incident edges (bottom). We note that
T-junctions have also been treated using hierarchical bases
(see e.g. [GKS02]).

2.2. Arbitrary embeddings

Although our framework is described in the context of a par-
ent simulation mesh outfitted with a number of embedded
particles that will be extended into a fully particle-centric
simulation framework (in section 3), here we give an ex-
ample to illustrate that our framework is more general than
this. That is, we switch from the notion of a parent simu-
lation mesh with an embedded set of particles to a parent
point cloud simulation system with an embedded mesh. In
the context of free-form deformations, one might use a near-
est neighbor approach to compute a mesh-free discretization
of internal forces on the point cloud, and subsequently move
the embedded mesh kinematically. Of course, this can lead
to potentially severe distortions of the embedded mesh, es-
pecially since the point cloud sampling of deformation is
very different from that perceived by the embedded mesh.
This can be alleviated by computing the internal forces on
the embedded mesh itself, as we do in the elastic ribbon
shown in figure 6, and then mapping the resultant forces to
the point cloud. Using these forces, we still time integrate
the point cloud particles and kinematically enslave the em-
bedded mesh, but the deformation of space is now sampled
more adequately for the purpose of simulating the embed-
ded mesh. Note that the kinematic motion of the ribbon is
dictated by the k closest parent particles of the point cloud.
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Figure 6: A ribbon is kinematically embedded in a point
cloud. Instead of using a standard mesh-free discretization
of the point cloud, we endow the ribbon with a constitutive
model which is used to compute elastic forces that are subse-
quently mapped to the point cloud. The first approach penal-
izes point cloud deformation and has no direct knowledge of
deformation artifacts within the ribbon, while our approach
directly penalizes distortions in the ribbon (2.3 sec/frame).

3. Soft Bindings

The hard bound particle framework is limited because the
hard bound particles are kinematically constrained to the
parent mesh rather than possessing real degrees of freedom.
Thus, specialized algorithms would be required for collision
processing, etc. We overcome these issues by introducing
the notion of a soft binding which couples a new, fully sim-
ulation capable particle with an existing parent particle or
hard bound particle target location as illustrated in figure 1.
We can then ignore hard bound particles for the purpose of
collisions and apply collision processing uniformly to parent
particles and soft bound particles.

Under no external influence such as collisions or soft
bound particle intrinsic forces, soft bound particles should
follow their target positions. This is achieved by applying
the force that leads to a matching acceleration between the
soft bound particle and its target, i.e. the soft bound particles
inherit elasticity and similar forces from the parent mesh. If
the acceleration of a hard bound particle is ae = ∑wiai =
∑wi( fi/mi), the force that is applied to the soft bound par-
ticle to match this acceleration is fs = ms ∑wi( fi/mi) where
ms is the mass of the soft bound particle. Note that we only
use this process to remap elastic forces, since applying it
to damping forces would compromise the symmetry of the
damping matrix in our implicit time integration scheme.

The mass of each soft bound particle is set to the effective
mass of its target (which is just the mass for parent parti-
cles). This duplication of mass does not change the effective
total mass of the object as measured by applied forces, be-
cause our mapping of forces from the parent mesh to the soft

Figure 7: (Left) A coarse deformable ball collides with a
kinematic sphere. (Middle) Soft bindings enable subtetrahe-
dron elasticity in response to the collision. (Right) The dy-
namically refined surface mesh.

bound particles properly accelerates those particles. How-
ever, a mass assignment stemming from a consistent physi-
cal principle would be desirable.

The coupling strategy between soft bound particles and
their targets depends on whether short term or long term drift
is desired. Therefore we give separate algorithms for short
term and long term drift below.

3.1. Synchronized coupling

The most straightforward way to transfer information from
the target particle to the soft bound particle is by directly
copying the target state. At first glance, this appears to nul-
lify the desired properties of soft bound particles effectively
reducing them to hard bound particles. However, in contrast
with hard bound particles which are kept consistent with
their target state at all times, soft bound particles are syn-
chronized to their target state at specific points of the time
integration loop allowing drift between two subsequent syn-
chronizations. Apart from collision processing, additional
forces may also be used to cause drift in soft bound particles,
e.g. a soft bound copy of the surface of a volumetric object
could be endowed with shell elastic forces. We subsequently
propagate any drift from their target locations back to their
parents, prior to the next synchronization of soft bindings
with their target state.

To propagate drift from a soft bound particle to its tar-
get, we compute the discrepancy in position ∆x = x−xe and
velocity ∆v = v− ve, where xe and ve are the position and
velocity of the (possibly hard bound) target particle. If the
target particle is part of the parent mesh these increments are
directly applied to its position and velocity, while if it is hard
bound we use the formulas in section 2 to propagate these in-
crements to the hard bound particle’s parent particles. This
method for projecting soft bound particles onto their target
locations could also be used as a more physically based post-
simulation correction to the T-junction nodes in [DMG05].

3.2. Coupling through binding springs

The synchronized coupling scheme only allows for short
term drift of the soft bound particles limiting their added
simulation capabilities. If long term drift is desired, we in-
stead employ a spring-like force between the soft bound par-
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Figure 8: (Left) Several spheres stitched together using
stiff implicit binding springs. (Right) Lowering the binding
spring stiffness leads to drift. The binding springs are de-
picted as orange cylinders (30 sec/frame).

ticle and its respective target particle (similar in spirit to a
PD controller). This binding spring force is

f b =− f b
e =−k(x− xe)−b(v− ve). (5)

Note that the binding spring has zero rest length and thus
linearizing about the rest state results in a multidirectional
(as opposed to the typical directional) damping term. We
will capitalize on this fact in our time integration scheme.
Binding springs more readily allow for full simulation ca-
pabilities in the soft bound particles. One no longer needs
to propagate information from the soft bound particles to
the parents or to synchronize the soft bound particles, but
rather the soft bound particles and parents are now implicitly
coupled in a two-way fashion via these binding springs. We
emphasize that the important properties of soft bindings de-
pend on the combination of binding springs with force map-
ping, and would not be achieved through springs alone. Note
that a limitation of our approach is that damping forces are
not mapped from parents to soft bound particles (to preserve
symmetry). Even in the absence of collisions, this leads to
drift that has to be corrected via the binding springs.

In figure 7 a coarse tetrahedralized volume has its surface
mesh adaptively and dynamically refined based on proximity
to collision geometry, and the soft bound particles present at
every vertex of the surface mesh provide for subtetrahedron
deformation.

3.3. Time integration

Our time integration scheme is a variant of the semi-implicit
modified Newmark integration scheme of [ITF04]. The de-
formable object is evolved from time tn to tn+1 as follows:

1. ṽn+ 1
2 = vn + ∆t

2 a(tn+ 1
2 ,xn, ṽn+ 1

2 )
2. x̃n+1 = xn +∆tṽn+ 1

2

3. Process collisions (x̃n+1,vn)→ (xn+1, ṽn)
4.∗ vn+1 = ṽn + ∆t

2

(
a(tn+ 1

2 ,xn+ 1
2 , ṽn)+a(tn+ 1

2 ,xn+ 1
2 ,vn+1)

)
where xn+1/2 = (xn + xn+1)/2. Our scheme deviates from
that of [ITF04] in that the trapezoidal velocity update in step
4∗ uses xn+1/2. This substitution retains second order accu-
racy and allows for fully implicit integration of our binding

Figure 9: Allowing the hard bound target positions to drift,
one can model subtetrahedron plasticity resulting from col-
lisions of soft bound particles (3 sec/frame).

spring forces. Under the common assumption that the veloc-
ity dependent forces are linear, we can rewrite step 4∗ as

4. vn+ 1
2 = ṽn + ∆t

2 a
(

tn+ 1
2 ,xn+ 1

2 ,vn+ 1
2

)
5. vn+1 = 2vn+ 1

2 − ṽn

The version of trapezoidal rule in step 4∗ can suffer from
poor numerical conditioning when the two acceleration
terms are rather large but of opposite sign, whereas steps
4 and 5 use a completely robust backward Euler update fol-
lowed by extrapolation. That is, in the limit of a large time
step the first acceleration term in step 4∗ pushes a positive
coefficient c of an eigenvector toward −∞ while the sec-
ond acceleration term brings that value back from −∞ to
−c, possibly failing due to loss of precision. However, in the
same large time step limit, step 4 damps c to 0 and step 5
robustly extrapolates c through 0 to −c.

The time step restriction imposed by a single binding
spring is ∆t < (b +

√
b2 +4µk)/k where µ is the reduced

mass. As is typical, this drives the time step to zero as the
spring constant is increased, and thus we propose a fully im-
plicit treatment of the binding springs leveraging the fact that
our binding springs are fully linear in both position and ve-
locity (which is not the case for nonzero rest length springs).

Equation (5) can be written in matrix form as fb =
−Kx−Bv, where the stiffness and damping matrices K and
B are symmetric positive semi-definite. We apply our time
integration scheme to this force, with the modification that
in step 1 we use the half time step position x̃n+1/2, making
this step fully implicit:

ṽn+ 1
2 = vn +

∆t
2

ab(tn+ 1
2 , x̃n+ 1

2 , ṽn+ 1
2 ) (6)

= vn +
∆t
2

(
−M−1Kx̃n+ 1

2 −M−1Bṽn+ 1
2 )
)

. (7)

Substituting x̃n+1/2 = 1
2 (xn + x̃n+1) = xn + ∆t

2 ṽn+1/2, where
the last equality comes from step 2, gives(

I+
∆t
2

M−1B+
∆t2

4
M−1K

)
ṽn+ 1

2 =vn− ∆t
2

M−1Kxn (8)

which is a true backward Euler step implicit in both position
and velocity with no time step restriction. We emphasize that
equation (6) only replaces step 1 in our time integration loop,
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Figure 10: Cloth pinched between two spheres. Conflicting
constraints are resolved by allowing drift of duplicate sur-
faces using soft bindings (2.8 min/frame, 150×150 mesh).

and step 4 still requires the use of xn+1/2. Our modifications
to [ITF04] are crucial for unconditional stability, e.g. using
xn+1 instead of xn+1/2 in step 4 leads to a time step restric-
tion of ∆t < (b+

√
b2 +8µk)/2k. We stress that this implicit

treatment of elastic forces is only used on the binding springs
and that all other elastic forces are treated explicitly in order
to more accurately resolve dynamic motion.

4. Examples

We used critical damping for the soft binding springs in our
examples. The stiffness parameters were set experimentally.
Figure 8 shows eight deformable spheres stitched together
using implicit binding springs as described in section 3.2.
On the left the binding springs are made sufficiently stiff to
retain coincidence of the connecting points without incurring
additional time step restrictions. The binding springs are vis-
ible on the right where their stiffness is reduced. In figure 9
we begin with a coarse deformable block. We then create a
duplicate copy of the top surface, which is refined and hard
bound to the block. Next, we use binding springs to attach a
soft bound duplicate of this refined surface for collision with
a stamp. When collisions stretch these binding springs to a
length beyond a prescribed threshold the hard bound target
particles are moved in material space (and a new barycen-
tric embedding is computed) to bring the length back down
to this threshold, analogous to typical plastic yield. We are
careful not to move any hard bound target particle outside
the material.

Using a variant of the virtual node algorithm [MBF04],
we cut a coarse cube mesh consisting of 320 tetrahedra into
289 sticks as shown in figure 11. Each stick is composed
of a number of tetrahedra that are only partially filled with
material and the polygonization of the material surface is
augmented with soft bindings to resolve self-collisions and

Figure 11: A coarse 320 tetrahedra cube mesh is cut into
289 sticks. Object collisions and self-collisions are resolved
by the soft bound embedded surface.

object collisions. See [SDF07] which is enabled by our new
hybrid simulation framework.

Figure 10 shows cloth pinched between two kinemati-
cally controlled spheres producing contradictory collision
constraints (see [BWK03]). For each particle in the cloth
mesh that is pinched between the two spheres, we create two
duplicate soft bound particles which each collide with only
one of the two spheres. Collisions with the sphere pull these
soft bound particles away from their hard bound target loca-
tions on the cloth surface resulting in binding spring forces
that pull the cloth mesh in both directions equilibrating in
a steady state. In the absence of any other forces, the soft
bound particles would slide along the sphere in an attempt
to minimize the length of the underlying binding springs.
However, we map the mesh-based constitutive model forces
of the cloth to the soft bound particles making them behave
in a fashion similar to their hard bound counterparts, i.e. re-
sisting stretching. Figure 10 (lower right) is a visualization
of the effect of mapping the constitutive model forces from
the hard bound target locations to their soft bound counter-
parts. That is, it is similar to creating a mesh which connects
all the drifted soft bound particles to each other and to the
parent mesh as depicted schematically by the orange wire-
frame. In fact, one could envision this as simulating three
distinct meshes: the parent mesh given by the cloth itself,
the orange wireframe mesh, and a second wireframe mesh
which agrees with the bottom half of the orange wireframe
but is concave up elsewhere resolving collisions with the top
sphere. However, we do not need to construct these dupli-
cate meshes, and instead automatically inherit these proper-
ties from the parent simulation mesh.

Figure 12 depicts the dynamic simulation of a muscle-
driven facial model for speech articulation from [SNF05].
The surface geometry is embedded in a non-graded adaptive
red-only BCC mesh with 135K tetrahedral elements (an 85%
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reduction from the mesh size in [SSRMF06]. Hard bind-
ings are used to simulate the resulting T-junctions, while soft
bound particles are used to model the high resolution surface
and also used for collisions, self-collisions and boundary
conditions. Since the simulation mesh does not conform to
the geometry of the cranium and jawbone, we use soft bound
particles on the high-resolution surface to enforce bone at-
tachments as well. A higher stiffness was used to attach the
embedded free skin surface to its hard bound counterpart,
and a lower stiffness was used for the connections between
soft-bound bone attachments and their hard bound targets.

5. Extensions to Rigid Body Coupling

Various authors have considered the two-way coupling of
rigid and deformable bodies using a variety of schemes, see
e.g. [BW97, OZH00, JV03, LF04]. We present preliminary
results showing that our hybrid framework can be applied to
these types of problems as well.

We consider the rigid body frame (xc,q), twist (vc,ω)
and inertia tensor I(q) = R(q)I0R(q)T , where I0 is a diag-
onal inertia tensor and R(q) is the rotation matrix associ-
ated with the current orientation. To facilitate our hybrid
formulation, we define a rigid body particle with the same
state as a rigid body. A rigid body hard binding is defined
by embedding a particle onto a fixed object space location
r0. Consequently, the kinematic state of the bound particle
is given as xe = xc + r(q) and ve = vc + ω× r(q) where
r(q) = R(q)r0 is the world space displacement of the em-
bedded particle from the center of mass of the rigid body.
We can write ve = W (q)(vc,ω) with the aid of the inter-
polation matrix W (q) = (I r(q)∗T ) where I is the 3× 3
identity matrix and r(q)∗ is the cross product matrix. Al-
though xe cannot be written in similar form, a linearized

Figure 12: An adaptive red-only BCC mesh for embedded
simulation of a muscle-driven face model. Hard bindings are
used for T-junctions, and soft bindings are used for collisions
and boundary conditions (18 min/frame).

Figure 13: A net is constructed using binding springs to cre-
ate simple point joints between hard bound particles on dif-
ferent rigid bodies.

change in the frame of the rigid body particle admits a sim-
ilar mapping, i.e. ∆xe = W (q)(∆xc,∆q), where ∆xc is the
displacement of the center of mass and ∆q is the vector
whose cross product matrix is the linearized rotation satis-
fying R(q(t +∆t)) = R(q(t))+∆q∗+O(∆t2).

Applying a force fe to the hard bound particle re-
sults in a wrench ( fc,τ) = W (q)T fe where fc = fe is
applied to the center of mass and τ = r(q) × fe is
the torque. Next consider a velocity-dependent damping
force fe = Geve on a hard bound particle, which results
in ( fc,τ) = W (q)T GeW (q)(vc,ω) = G(vc,ω) where G =
W (q)T GeW (q) maps twists to wrenches directly and re-
tains the symmetry and definiteness of the damping ma-
trix Ge. Similarly elastic wrench differentials are given
by (∆ fc,∆τ) =W (q)T KeW (q)(∆xc,∆q) = K(∆xc,∆q) where
K =W (q)T KeW (q) is the stiffness matrix expressed in terms
of the rigid body particle and Ke = ∂ fe/∂xe is the stiff-
ness matrix expressed in terms of the hard bound parti-
cle. We use these results to treat rigid body particles in the
same fashion as other parent particles in our time integration
scheme. Note that the definition of the global damping ma-
trix G = WT ḠW and global stiffness matrix K = WT K̄W
trivially extends to the case of rigid body bindings, by incor-
porating the interpolation matrix W (q) into the global matrix
W used in these equations. Finally, the global mass matrix
M is augmented with the diagonal entry diag(mI, I) for each
rigid body particle.

We preliminarily couple our hybrid simulation of rigid
body particles to a state-of-the-art rigid body simulation
scheme as follows:

1. Copy the state of the rigid bodies to the rigid body parti-
cles

2. Compute ṽn+ 1
2 as in section 3.3

3. Compute x̃n+1 using x̃n+1
c = xn

c + ∆tṽn+ 1
2

c and q̃n+1 =
q(∆tωn+ 1

2 )qn

4. Process collisions for deformable objects only
5. Compute vn+1 using steps 4 and 5 from section 3.3
6. Copy momentum only from the rigid body particles to the

rigid bodies
7. Separately, time integrate and collide the rigid bodies

This last step evolves the rigid bodies forward in time us-
ing a standard scheme as in [GBF03], and the two-way cou-
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Figure 14: Coupled simulation of rigid plates and cloth
sheets, where cloth particles have been hard bound to the
rigid plates. Each of the three rigid plates as well as the two
constrained rigid bodies depicted in orange are represented
by single rigid body particles.

pling is integrated into the standard rigid body solver using
steps 1 through 6 where only the effects of momentum are
preserved. Although it may be possible to extend the rigid
body particles to include more advanced contact, collision,
friction, stacking and complex articulation, it is not yet clear
how this could be done and we defer it to future work. Figure
13 shows the use of implicitly integrated binding springs to
enforce a simple point joint articulation between rigid body
hard bound particles. Figures 14 and 15 illustrate two-way
coupling between cloth and rigid bodies.

6. Conclusion

We proposed a novel method for augmenting a mesh-based
approach to deformable solids simulation with point-based
simulation technology. Current limitations include the exclu-
sion of damping terms in the mapping of forces from parents
to soft bound particles. Even in the absence of collisions, this
leads to drift that has to be corrected via the binding springs.
Furthermore, soft bound particles are assigned mass in addi-
tion to the mass carried by their parents. Force mapping par-
tially compensates for this by duplicating momentum along
with mass on the soft bound particles. Nevertheless, when
binding springs are used instead of synchronized coupling,
collision handling may be adversely affected by the different
amounts of mass assigned to the soft bound surface and its
hard bound counterpart. Finally our coupling of deformable
and rigid bodies is preliminary and requires separate han-
dling of rigid and deformable body collisions, limiting the
applicability of this scheme for scenarios involving complex
contact, stacking, friction and articulation.
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DUCHAMP T., POPOVIĆ Z.: Interactive skeleton-driven
dynamic deformations. ACM Trans. Graph. (SIGGRAPH
Proc.) 21 (2002), 586–593.

[CGC∗02b] CAPELL S., GREEN S., CURLESS B.,
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