
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Robust High-Resolution Cloth Using Parallelism,
History-Based Collisions and Accurate Friction

Andrew Selle, Jonathan Su, Geoffrey Irving, Ronald Fedkiw

Abstract—In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly
detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate
model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated
accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we
specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high-resolution
and high-fidelity simulations.

Index Terms—Computer Graphics, Geometric algorithms, Physically based modelling, Cloth, Collision response, Friction

F

1 INTRODUCTION

C LOTH simulation is pervasive in film, e.g. the untan-
gling strategies for Monsters Inc. [1], the collision

and stiction methods for Terminator 3 and Harry Potter
[2], and the wrinkle system for Shrek 2 [3]. Cloth sim-
ulation also promises to have significant future impact
on the clothing industry [4] (see also [5]). While, some
researchers have focused on real-time simulation for
computer games or non-hero characters [6] that have
lower quality requirements, our focus is on hero char-
acters, online shopping, and related applications that
need photorealistic cloth and clothing. Achieving such
realism requires higher resolution because the number
of bends and folds is limited by the underlying cloth
discretization.

Thus the focus of this paper is introducing an ap-
proach allowing simulation of extremely high resolu-
tion meshes and producing interactions commensurate
with this level of detail. This contrasts with previous
cloth papers that simulated relatively few triangles: [7]
used 10-40 thousand elements, [8] used 5-38 thousand
elements, and [9] mostly considered a few thousand
elements but their highest resolution simulation was a
very thin ribbon with 80 thousand elements that exhibits
bending but no folds or wrinkles. These resolutions
cannot resolve or simulate folds and wrinkles at the
granularity of Figure 2. Most simulation techniques
would fail if resolution were increased because of two
problems: robustness and tractability. These problems
typically manifest themselves in time integration and
self-collisions/contact (see Figure 3).

The first contribution of this paper is a modified time
integration scheme which is tractable for high-resolution
cloth simulations. Time integration for cloth has been
studied extensively, and researchers have settled on
using either semi-implicit approaches such as [2], [11]
or fully implicit approaches [12] as they remove the
quadratic time step restriction due to the damping terms.

Bridson [10] Method Our Method
(45,000 triangles) (1,700,000 triangles)

Fig. 1. High resolutions are necessary to represent and
simulate highly detailed, so our goal is to maintain the
same robustness and quality while having better scalabil-
ity.

Though fully implicit methods have no time step re-
striction, accurate time integration requires increasingly
small time steps as resolution increases, meaning high
resolution simulations are still intractable even with im-
plicit integration schemes. To make our high resolution
simulations tractable, we turn to distributed memory
parallelism to improve performance. While there has
been much work on shared and distributed memory
parallelism for cloth simulation [13]–[18], we emphasize
the importance of our method’s parallel Gauss-Seidel
collision/repulsion response.

The second contribution of this paper is to maintain
the robustness of the collision algorithm while making
the collisions tractable for high-resolution simulations.
Self collisions and interactions are important not only
because they prevent interpenetration but because they
also force the cloth to form folds and wrinkles. Recent
works have demonstrated that it is possible to stop all
collisions even in complex scenarios [10], [19]–[21], while
other works have shown that untangling is useful as well
[9], [22], [23] especially in situations such as pinching

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 2. Two examples of cloth showing the types of intri-
cate folds and wrinkles we wish to simulate; both would
require high resolution simulation. A satin bed sheet (left)
shows that larger scale cloth typically has more folds
and wrinkles. Intricate detail is also visible on a Greek
sculpture (right) sculpted to resemble a light fabric.

[1]. Geometric collisions (using swept primitives) can
resolve complex interactions accurately, but they be-
come intractable as the resolution increases. Repulsion-
based approaches (even with untangling) are not robust
enough as the approximate geometric information they
use degrades as simplex density increases. Even robust
hybrid approaches such as [10] still require the use of a
geometric collision algorithm for every time integration
step that contains a collision, which becomes intractable
as the mesh resolution increases and the time steps
become smaller. We propose an extension to the hybrid
repulsion/collision technique, defining a history-based
repulsion/attraction scheme that allows us to rely less
on geometric self collisions while still remaining fully
robust, allowing tractable scaling to higher resolutions.
Notably, the knowledge of a collision free state enables
the application of smarter repulsion/attraction forces
without heuristics to estimate the untangled configura-
tion (e.g. voting algorithms and methods that preclude
the use of edge/edge collisions).

The third contribution we make is introducing more
accurate friction handling between cloth and collision
objects to ensure that the extra simulated resolution is
used effectively. Cloth object friction and interaction is
especially important as the object a cloth is interacting
with defines much of its behavior. We propose a novel
technique for cloth-object collision and friction that is
significantly more accurate than previous methods ap-
plied to a semi-implicit or implicit time stepping scheme.
See Figure 10.

2 PREVIOUS WORK

Computer graphics cloth simulation extends back at least
20 years, and early examples include [11], [24]–[29]. A
good background on cloth modeling is provided in [30].
We use a variant of the semi-implicit method introduced
by [2], but other examples of time integration for cloth

Fig. 3. A piece of cloth with a half-million triangles is
forced to twist by a rotating cylinder. Even under such high
tension, the cloth remains self-intersection free showing
the robustness of our algorithm at high resolution.

include [12], [31]–[35]. Our goal is to obtain folds and
wrinkles in a physically based fashion from the interplay
of in-plane constitutive forces and bending forces, as
opposed to adding the wrinkles via a separate modeling
system, e.g. [3], [36], [37]. Although we do not address
constitutive models for in-plane forces, our preliminary
tests show that finite elements and mass-springs models
behave similarly, but we refer the interested reader to
[38], [39]. Bending models have been addressed by [2],
[40]–[44]. Although we currently use a static resolution
grid, an adaptive approach would allow even more
resolution, see e.g. [45]. For collision detection, we use
straightforward algorithms and extensions based on well
known work but refer the interested reader to [7], [8]
and the references therein. We also note the work on
improving efficiency in low curvature regions in [22],
[46].

3 ALGORITHM OVERVIEW
We use a simple mass-spring constitutive model with
edge springs as well as bending springs that connect
unshared vertices of adjacent triangles (illustrated in
Figure 4) so we can simulate arbitrary triangle meshes.
The force for a spring is

F =
[
E

(
‖u(t)‖
‖u(0)‖

− 1
)

+ d(V1(t)− V2(t))T u(t)
‖u(t)‖

]
u(t)
‖u(t)‖

where u(t) = X2(t) − X1(t), E is the Young’s modulus
(stiffness) and d is the damping parameter. More accu-
rate models such as finite-element constitutive models

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 4. Constitutive model of cloth consisting of both
springs on triangle edges and springs across shared edge
of triangle pairs.

are possible, but we are interested in accurately model-
ing collisions and interactions so we found this simple
model to be sufficient. Although any integration scheme
can be used, we use a semi-implicit Newmark variant
similar to [2] which allows us to resolve the higher fre-
quency elastic forces explicitly while efficiently handling
the damping forces implicitly. The main differences are
where we have placed self-repulsion and body collision
updates.

Our approach to integrating time integration and colli-
sion detection/response is similar to [10], but with some
key differences. As they did, we have an outer collision
loop that puts the mesh into a collision free state. Within
this outer collision loop a nested time integration scheme
is used to produce a candidate final position and velocity
for each particle in the mesh. The collision loop then cal-
culates an effective velocity by subtracting the candidate
position from the last collision free state and modifies
this effective velocity until it obtains a displacement
that removes all collisions. If collisions were found, [10]
rewound to the last collision free state and repeated
the simulation with half the number of time steps per
collision step, eventually resulting in one time step per
collision step. In Section 4 and Section 5, we describe
how our history-based attraction/repulsion framework
allows us to circumvent this difficulty and thus achieves
better performance while maintaining robustness (see
Figure 14). The ith iteration of our outer collision loop step
proceeds as:

A. Compute repulsion pairs and their orientation history
B. Perform ki time integrations (inner loop)

1. ṽn+1/2 = vn + ∆t
2

a(tn+1/2, xn, ṽn+1/2)

2. Modify ṽn+1/2 with elastic and inelastic self-repulsion
3. x̃n+1 = xn + ∆tṽn+1/2

4. Collide with body objects to obtain xn+1 and vn
?

5. vn+1/2 = vn
? + ∆t

2
a(tn+1/2, xn+1/2, vn+1/2)

6. Extrapolate ṽn+1 = 2vn+1/2 − vn
?

7. Modify ṽn+1 to vn+1 for friction with objects
8. Modify vn+1 with friction and inelastic self-repulsion

C. Detect and resolve moving collisions.

Here ∆t is the time step, a(t, x, v) is the acceleration
and xn+1/2 = (xn + xn+1)/2. In step A we search
hierarchies for repulsion pairs as described in Section 5.
In step B we perform ki time integrations which consists
of several steps: step B.1 is a backward Euler solve
to obtain a temporary velocity, which is subsequently
modified with self-repulsions in step B.2 (Section 5),
before being used to advance the cloth positions forward
in time in step B.3. Then in step B.4 our novel cloth-object

collision algorithm (Section 6) is applied, obtaining the
final collision corrected position xn+1 and intermediate
velocity vn

? . Next, we apply a backward Euler solve
in step B.5 followed by an extrapolation in step B.6,
which are equivalent to applying the trapezoidal rule
to velocity but are significantly better conditioned than
the standard formulation (see [47]). Finally, in step B.7
we modify this final velocity to obtain the appropriate
cloth-object friction as dictated by our new cloth-object
collision algorithm (Section 6) and subsequently apply
self-repulsions in step B.8 (Section 5). Finally step C
ensures that no collisions remain by detecting and re-
moving collisions described further in Section 4.

We also employ distributed memory parallelism using
message passing so that our algorithm can be used on
more than one machine rather than being constrained
to a single shared memory machine. Work is distributed
across m processors by partitioning the particles into m
disjoint sets. Our parallelization strategy and contribu-
tions are discussed in Section 7.

4 THE OUTER COLLISION LOOP

During the course of a simulation, an outer loop of
collision steps is performed where the ith collision step
evolves time using ki time integrations and then resolves
collisions. As in [10] this loop maintains the invariant
that positions are collision free at the beginning and
end of each of these collision iterations. If ki > 1 and a
geometric collision was detected, [10] rewound time and
reran the collision iteration with ki/2 and this process
would continue until ki = 1. Only then were robust
geometric self collisions used to zero the relative velocity
of interacting collision pairs. We instead never rewind,
and run with a fixed ki between 8 and 16 ensuring
tractability in complicated high-resolution interactions.
[10], by contrast, applied repulsions only at the end
of the collision step, using the stored self collision free
positions. They could not apply repulsions per time step
because as positions moved they had no way of tracking
side coherence so repulsions could exacerbate tangling
that produced more rigid groups and thus visual ar-
tifacts. The key to allowing per time step repulsions
without creating artifacts is to store history information
together with repulsions discovered in step A so that the
repulsions applied per time in step B.2 and B.8 do the
right thing (described in Section 5).

In step C, geometric collisions test whether an inter-
action pair (point/triangle or edge/edge) intersects by
checking if the linear trajectories from the last known
collision free positions to the current time integrated
positions (after ki time steps) interfere. The linear trajec-
tory implicitly defines the notion of an effective velocity
which equals the net change in position divided by
the total time elapsed since the last collision free state.
Potentially colliding pairs are found by box hierarchy
searches with bounding boxes containing the swept tra-
jectory primitives. Pairs of leaf boxes are further pruned

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

by checking for intersections in a coordinate frame that
moves with the average effective velocity of the involved
particles.

Potentially colliding pairs are processed in Gauss-
Seidel fashion using the algorithm in [10] which requires
the solution of a cubic equation to determine if the
four points involved become coplanar. The inelastically
applied collisions are handled by zeroing the relative
effective velocity and using this to compute the new
positions. If the final positions of the collision pair are
in too close proximity, an elastic self repulsion is applied
(exactly as in self-repulsion) to push them further apart.
We stress that, unlike in [10], this elastic repulsion im-
pulse uses the average time step size taken during the
collision loop as opposed to the total time elapsed during
the collision loop because we can rely on future per time
step repulsions. For any affected particle, we use its new
position to calculate a new effective velocity.

After processing all potentially colliding pairs and
obtaining new effective velocities, new collisions could
be generated. Thus, we iterate the entire algorithm until
no collisions are found. The second and later iterations
are significantly less expensive than the first since we
can reduce the cost of a hierarchy search by considering
only box pairs whose expansion contains nodes modified
in the previous iteration. As in [10], we rely on rigid
“impact zones” when collisions cannot be resolved after
a number of iterations. Not noted by other authors we
found that rigid groups sometimes form between copla-
nar, colinear, or colocated points causing the inversion
of the inertia tensor to fail. These situations occurred as
we scaled to higher resolutions which explains why pre-
vious authors did not observe them. Thus we robustly
compute the pseudoinverse of the symmetric 3×3 inertia
tensor using a singular value decomposition. Once the
algorithm finds no further collisions, step C is complete
and we satisfy the collision-free invariant with the same
robustness and visual quality as [10].

5 HISTORY-BASED SELF-REPULSIONS
Since geometric self collisions are expensive to compute
and we would like to perform them less frequently,
we rely on self-repulsions to help prevent and simplify
resolution of collisions. Similar to collisions we consider
both point/triangle and edge/edge interactions. Pairs
are obtained in step A using a bounding box hierarchy
which is discussed more extensively in Section 7. For any
type of interaction, we first apply it for all point/triangle
pairs followed by all edge/edge pairs, since there are
fewer point/triangle pairs and their behavior is typically
more robust. In step B.2 of the time integration loop, first
an inelastic collision impulse is used to stop approaching
interaction pairs, and then if necessary a spring-based
elastic repulsion is used to push interaction pairs further
apart. Note that the velocity used in step B.3 is discarded
and that steps B.5 and B.6 fully integrate the velocity
from time n to time n + 1. Frictional effects are only cal-
culated in step B.8 in order to implement self repulsions.

The amount of friction is determined based on the nor-
mal forces caused by the inelastic repulsions used to stop
cloth from encroaching on itself. Since elastic collisions
can produce artifacts, we use the elastic repulsions only
to modify the velocity that will be used to update the
positions to reduce the chance of collisions while only
using inelastic repulsions for the actual update to the
velocity in step B.8.

[10] also made use of repulsions to ease the re-
quirements on the geometric collision stage, but he
applied them immediately before the collision stage (i.e.
in our step C) using the linearized effective velocities.
We instead use actual simulation velocity state and
apply repulsions at per time step granularity resulting
in increased stability and robustness. We follow [10]’s
formulation of repulsions. Here we consider point-face,
but edge-edge is similar. For an inelastic repulsion the
impulse is Ic = mvN/2 where vN is the normal velocity
and m is the mass of all the pair’s particles. For an elastic
repulsion of spring stiffness k we use

Ir = −min
(

∆tkd,m

(
0.1d

∆t
− vN

))
(1)

where

d = h− (x4 − w1x1 − w2x2 − w3x3) · n̂ (2)

and wi are the barycentric weights of the free point
x4 projected to the triangle, x{1,2,3} are the triangle’s
point locations, h is the repulsion thickness, and n̂ is
the triangle normal. Note the elastic repulsion is limited
to 0.1 of the interpenetration, removing the need for
any damping parameter and the inelastic repulsion does
not require damping as it provides infinite damping in
the normal direction. The modification of the friction is
also accomplished with an impulse that uses the change
in normal velocity applied by the inelastic or elastic
collision ∆vN .

Unfortunately, repulsions only work if the interaction
pairs contain the correct notion of sidedness, as they
otherwise work against an interference free state if the
pairs have crossed (e.g. if a point spuriously crosses
a face). Several authors have suggested switching to
attractions (e.g. [1]) after cloth has non-physically inter-
penetrated itself, however it can be difficult to ascertain
whether attractions or repulsions should be applied and
thus sometimes the interactions are turned off altogether.
Since crossing may occur during the time step, checking
for interpenetration at discrete times is insufficient. [10]
avoids this problem by only applying repulsions in the
collision free state, which has the downside of only al-
lowing repulsions at the granularity of the outer collision
loop. Since mesh elements can move considerably dur-
ing the time integration, many potential repulsions are
missed, reducing the benefit of repulsions in avoiding
collisions as well as reducing the amount of small scale
bending and folding that could be produced.

Our key idea is to compute and store interaction data
from the collision free state in step A and to subsequently

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 5. Inversion criteria for point/triangle and edge/edge
interaction pairs. (Top) Point/triangle pairs are considered
inverted if the point is in a different triangle half-plane.
(Bottom) Edge/edge pairs are considered inverted if the
shortest direction vector rotates too far from its collision
free orientation.

use this data to apply history-based repulsions and
attractions during all time integration steps during step
B. This increases efficiency because we do not apply a per
time step collision detection scheme but instead detect all
potentially interacting repulsion pairs during the outer
collision loop. Although this tends to produce more pairs
than is necessary, and in fact we purposefully use non-
aggressive pruning to capture more pairs because the
elements can move significantly during a sequence of
time steps, it is quite efficient to perform a simple prune
at each time step to see if the potentially interacting pairs
are indeed interacting. The total cost of all operations in
our per time step repulsion method (including detection
and application) is typically 7% of the code run time.
This approach contrasts with others’ who have used
voting schemes to construct sidedness (e.g. [48]) as our
use of the collision free state to determine orientation
alleviates the need for majority (voting) approaches.

During the outer collision loop in step A, after finding
all potentially interacting pairs, we compute and store
the relative orientation for later use in our history-
based repulsion scheme. For the point/triangle case, we
apply a repulsion whenever the point remains on the
correct side of the triangle as determined by its normal
(Figure 5 top), and otherwise switch to an attraction.
This is implemented by ensuring the normal n̂ always
points toward the free point at the collision free time.
If not then the points are reordered. i.e. if we have pair
(x1, x2, x3, x4) then if (x2 − x1 × x3 − x1) · (x4 − x1) < 0
then consider the pair as (x1, x2, x4, x3). Then as a point
x4 passes from the correct side through the triangle, d
will increase in equation 2, leading to a larger impulse
in a correcting direction in equation 1. For the edge/edge
case, we store the shortest direction vector between the
two interacting edges in the collision free state s0, and

Fig. 6. Particles are depicted falling towards an incline
plane. (Left) A simple level set adjustment to position
incorrectly projects in the normal direction. (Right) Our
improved method first finds the collision point and then
steps to the final position.

later compare this with the shortest direction vector s
in the current state (Figure 5 bottom). This formulation
does not penalize rotation of segments in parallel planes,
but it does penalize rigid body rotations. This makes the
edge/edge history-based heuristic less reliable than the
point-face one so we only flip the current shortest vector
if s0 · s < ε (where ε = 0 is aggressive and ε = .9 is
conservative).

6 CLOTH-OBJECT COLLISIONS

Bridson [2] suggested a level set based collision algo-
rithm that processes each position x̃n+1 and velocity vn

as follows. Suppose φ(x) measures the signed distance
from a point in space to all objects in the scene φ(x) < 0
is inside and φ(x) > 0 outside. Then if φ(x̃n+1) < 0,
a collision is detected with depth d = |φ(x̃n+1)| and
normal N = ∇φ(x̃n+1), assuming that ∇φ has already
been normalized. The position is then projected in the
normal direction xn+1 = x̃n+1+dN as shown in Figure 6
(left). For the sake of exposition the following steps
define a function v? = Γ(v) that adjusts the velocity
to remove any inward normal component and include
the effects of friction. The normal and tangential ve-
locity components are computed as vN = vT N and
vT = v − vNN for the particle and vBN = vT

BN and
vBT = vB − vBNN for the body. Here vB is the velocity
of the body at time n + 1. The modified normal velocity
v?N = max(vN , vBN) ensures that the relative velocity
does not point into the body. The tangential velocity
is modified to v?T = vBT + max

(
0, 1− µv?N−vN

|vT,rel|

)
vT,rel

where vT,rel = vT−vBT and µ is the coefficient of friction.
The final result is

v? = v?NN + v?T .

The two sources of inaccuracy in this previous method
emanate from errors in the position update obtained
by projecting in the normal direction and the subse-
quent changes in velocity incurred during the conjugate
gradient solve. Although [2] constrained the normal
velocity during their second conjugate gradient solve,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

the friction and motion in the tangential direction were
still adversely affected. While infinite friction could be
obtained by also constraining the tangential velocity,
one cannot accurately obtain finite nonzero friction, and
moreover one cannot constrain the velocity in the first
conjugate gradient solve as it would cause cloth to stick
to objects.

To compute a more accurate collision adjusted posi-
tion, we find the point where the level set changes sign
xc = xn + θ∆tṽn+1/2 where θ = φ(xn)/(φ(xn)−φ(x̃n+1))
by linear interpolation. If the object is moving, φ depends
on time as well, and we replace φ(xn) with φ(xn) +
∆tvBN in the definition of θ noting that all evaluations of
the level set function φ occur with the time n+1 collision
body. Next we compute v

n+1/2
? = Γ(ṽn+1/2) which is

used to move from xc to the final modified position
xn+1 = xc + (1 − θ)∆tv

n+1/2
? . Note that (1 − θ)∆t is the

remaining fraction of our time step after the collision
as shown in Figure 6 (right). Although v

n+1/2
? yields

the correct post collision velocity for use in the position
update, we also compute vn

? = Γ(vn) for subsequent
use in the trapezoidal rule (steps B.5 and B.6) which is
more correct at time n. While steps B.1 to B.3 of the
time integration scheme are used to obtain the correct
position, steps B.5 and B.6 are used to update the velocity
which also must be corrected for contact. Specifically,
any forces applied during the trapezoidal rule velocity

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

P
o
s
it

io
n

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.5

1.0

1.5

2.0

V
e
lo

c
it

y

New Method
Old Method
Analytic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
o
s
it

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

V
e
lo

c
it

y

Accelerating Particle

Decelerating Particle

Fig. 7. Plot of displacement and tangential velocity over
time for a single particle moving down an incline plane.
Our result is coincident with the analytic result for both ac-
celerating and decelerating particles, while the previous
method accelerates too fast in both cases. In particular
the analytic velocity is v(t) = v0 + (sin θ − µ cos θ)gt
when not stopped. If µ > tan θ stopping happens when
v(v0/(g(sin θ − µ cos θ))) = 0. The analytic position is
x(t) = v0t + (sin θ − µ cos θ)gt2/2. We use θ = π/5,
g = 9.8. For accelerating we use v0 = 0 and µ = .6 and
for decelerating we use v0 = 1 and µ = .9

update will contain both tangential and normal com-
ponents so that the conjugate gradient algorithm must
project the normal components of the forces to zero to
keep points in contact constrained to vn

?N .
Similar to [12] we can determine the net normal force

applied during the trapezoidal rule (or for backward Eu-
ler) and use it to correct our friction algorithm. Although
[12] used a simple model, we use the more complex Γ
function. For the sake of exposition, assume that the final
velocity step was a backward Euler step to tn+1 instead
of the trapezoidal rule, then the velocity update equation
is

ṽn+1
P = vn

? +P (
∆t

m
Fi(tn+1, xn+1)+

∆t

m
Fd(tn+1, xn+1)ṽn+1

P)

where Fi is the velocity independent force, Fdṽ
n+1 is

the linear velocity dependent damping force, P projects
away the normal component of each colliding point with
I−NNT , and ṽn+1

P are the solved velocities (which have
normal components constrained by projections). Using
the same forces without applying the projection gives a
different result

ṽn+1
NP = vn

? +
∆t

m
Fi(tn+1, xn+1) +

∆t

m
Fd(tn+1, xn+1)ṽn+1

P

which includes the global effects of the projection in Fd

but applies all forces to the velocities without projection.
Although ṽn+1

NP does not have a zero normal relative
velocity for nodes in contact, its damping forces have
been properly globally conditioned for contact, i.e. they
use the ṽn+1

P velocity. To include contact in step B.7, we
take ṽn+1

NP and apply Γ to obtain vn+1 = Γ(ṽn+1
NP). Note

that Γ will compute the same normal force that P applied
during the conjugate gradient solve. In addition, Γ will
apply the appropriate friction that P did not apply.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

P
o
s
it

io
n

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.5

1.0

1.5

2.0

V
e
lo

c
it

y

New Method
Analytic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
o
s
it

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

V
e
lo

c
it

y

Accelerating Tetrahedron

Decelerating Tetrahedron

Fig. 8. A single tetrahedron slides down an incline plane,
matching the analytic solution for both accelerating and
decelerating test cases. The analytic formulas and param-
eters are the same as the particle’s.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 9. We drop 100 pieces of cloth with 10,000 triangles each (1 million triangles total). A linear wind drag model
causes them to flutter and interact. The simulation time was under 5 minutes per frame.

To test our new algorithm we consider a single particle
sliding down an incline plane. We consider two cases:
one with a particle slowing down and coming to rest
and another with a particle starting from rest and accel-
erating. (Note in these simple cases, the incline plane

Fig. 10. A piece of cloth with initial tangential velocity
falls on an incline plane with high coefficient of friction,
and undergoes static friction causing it to roll. The cloth
simulated by the previous method slips immediately on
contact with the ground and moves faster (incorrectly)
down the incline. Note the resolution here is about 80,000
triangles, showing that even on lower resolutions we
achieve better results.

does not move, the normal does not change and the
particle starts and stays in contact, i.e. θ = 0) Figure 7
compares the previous algorithm, our improved version,
and the analytic solution. Since the single particle test
case does not require conjugate gradient, as gravity is the
only force, we show in Figure 8 the same test repeated
with a tetrahedron that uses non-trivial damping forces.
Figure 10 shows a more complicated example where
cloth rolls with static friction.

If many collision objects are used during a simulation,
the cost of evaluating φ can be prohibitive, especially
for memory-intensive collision objects which we desire
to process only once. For efficiency we use a uniform
spatial partition for collision body occupancy and iterate
over cloth points, creating a list of potential interactions.
Subsequently, each collision body is accessed only once
and all potentially interacting points are processed with
it.

One limitation of this algorithm is that the lineariza-
tions used for the position correction can be problematic
on high curvature objects. Another limitation of this
algorithm is that it queries for point penetration within
the collision body, so if a collision body is excessively
thin or velocities are high, a collision might be missed.
In practice this is rarely an issue and in fact this type
of collision approach is frequently used for a character’s
body in order to simulate clothing. Alternatively, body
collisions can be handled within our self-collision frame-
work instead, although the much more efficient cloth-
body algorithm should be favored if it is applicable.

7 PARALLELISM
Each particle in the cloth mesh is assigned to a processor
by using a recursive median split. If the cloth configura-
tion changes significantly, it may improve performance

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 11. A piece of cloth with 1.8 million triangles is draped over a ball. Low ground friction causes the cloth to tightly
pack beneath the sphere. As the ball begins to spin, the high frictional coefficient causes the detailed folds of the cloth
to twist.

to reassign particles using the median split again and
transfer particle data accordingly; we found this unnec-
essary in our examples. Forces involving particles across
processor boundaries are computed redundantly on each
processor owning involved particles after first sending
all boundary particle information across processors. It
is significantly cheaper to exchange the state and com-
pute forces redundantly than to compute the forces on
one processor and send the results to other processors.
Conjugate gradient also requires inter-processor commu-
nication to perform inner product and residual norm
reductions.

In steps A and B of the outer loop we perform searches
for pairs of interacting objects using axis-aligned bound-
ing box hierarchies [49]. We synchronize the position
data to every processor so each can construct a full
hierarchy for points, segments, and triangles, which we
use for doubly recursive traversals on every processor.
Point/triangle interaction pairs are obtained by collid-
ing the point hierarchy with the triangle hierarchy and
edge/edge pairs are obtained by colliding the segment
hierarchy against itself. We assign the detection of each
potentially interacting pair to the processor of lowest
index that owns one of the involved particles. Each
processor searches for its assigned interaction pairs by
pruning pairs of boxes whose expansion only contains
interaction pairs assigned to other processors. Thus we
avoid searching down branches of the Cartesian product
tree if any interactions found would be owned by other
processors.

Applying repulsions or collision responses must also
be parallelized but it is important to make sure pair
response is done in Gauss-Seidel ordering. That is, each
pair should be processed seeing the newest data that is
available, so the effect of any previously applied repul-
sion is used in any subsequent repulsion with which it

shares nodes. If response is done instead in Gauss-Jacobi
order then impulses may be counted multiple times.
While others [14] have have discussed parallelization
of cloth, these papers have not discussed the impor-
tance of collision response ordering. Thus our parallel
algorithm proceeds in two passes whenever we wish to
apply a collision or repulsion set. We label interaction
pairs (point/triangle or edge/edge) involving particles
owned by different processors as boundary pairs and label
those owned by only one processor as internal pairs.
Using a flood-fill algorithm, each connected component
of boundary pairs is processed separately (in parallel)
in the first phase noting that a Gauss-Seidel ordering
is still used within each connected component. Next in
the second phase, modified particle velocities are sent
to the processors that own the respective particles, and
the remaining internal pairs are processed (again in
Gauss-Seidel order) independently by the processor that
contains them. See Figure 12 for an illustration of this ap-
plication strategy. Note that this strategy always ensures
the effective parallel ordering is equivalent to some serial
Gauss-Seidel ordering. We note that repulsion pairs,
boundary pairs and internal pairs are discovered and
transferred to the appropriate processors in step A.1 and
are used many times in step B.2 and B.8.

Fig. 12. Parallel collision/repulsion pair Gauss-Seidel
ordering. Phase I consists of each connected component
of boundary pairs being processed (middle). Phase II
computes all internal pairs using the new data from the
boundary pair processing.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 13. A piece of cloth with 1.7 million triangles is flipped by a sphere causing it to fold over itself. The sphere then
pushes through the complicated clump of folds.

8 EXAMPLES

We ran our simulations with meshes ranging from a half-
million to 2 million triangles on between 2 to 4 quad-
processor Opteron 2.8 GHz machines connected by gi-
gabit ethernet, but obtained similar performance profiles
on commodity dual-core dual-processor machines. We
used 16 time steps between each collision processing
step though we reduced this number to 4 or 8 during a
few collision intensive sections. Automatically choosing
the number of time steps between collision processing
steps is important future work but we emphasize that
approaches that scale to one time step per collision loop
whenever collisions occur [10] or use one time step per
collision loop [21] become intractable on large meshes.
Even on lower resolution meshes where there are fewer
collisions, we still get a benefit by running with 16
total loops (e.g. Figure 14). None of our examples used
viscous air (ether) drag to damp the velocities, and only
the simulations in Figures 9 and 15 used wind drag.
We rendered cloth using a standard ray tracer. Although
the results of cloth simulations can have their resolution
artificially increased in a subdivision postprocess (even
avoiding collisions as in [10]), our simulated examples

Parameter Description Value
Ee Edge Youngs Modulus (Stiffness) 4.14 N
ξe Edge Overdamping Fraction 15
Eb Bending Youngs Modulus (Stiffness) 0.41 N
ξb Bending Overdamping Fraction 8
CG Tol Convergence for Backward Euler 10−3 m/s
Mass Mass of node in mesh 10−6 kg
g Gravitational constant 9.8 m/s2

h Repulsion Thickness 0.01 m
k Repulsion Spring Constant 30 Ns/m
ki Collision Total Loops 4− 16

TABLE 1
Parameters of our model.

were of sufficient resolution to require no subdivision
except for the example that used 100 pieces of lower
resolution 10 thousand triangle cloth. This is an impor-
tant step as subdivision is only a stop-gap measure that
makes renderings visibly smooth, and it cannot intro-
duce detail missing from the low-resolution simulation.
We have summarized some of the key parameters that
we used to generate our examples in Table 1.

We begin with our lowest resolution example, a half-
million triangle version of a twisting cloth torture test
shown in Figure 3, demonstrating the robustness of
our algorithm even in difficult collision situations. This
example averaged 30 minutes per frame, but as the
two ends become intertwined the strain on the knotted
self-collision area becomes very high and frames take

0 50 100 150 200 250 300 350 400
Frame

0

50

100

150

200

T
im

e
 (

s
)

Total Loops 16

Adaptive

Fig. 14. Timing comparison of using adaptive collision
resolution with rewind (Bridson) and the fixed total loop
strategy that we can apply due to our history based
repulsion scheme.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 15. (Left) A photograph of a real piece of cloth draped showing intricate folds and wrinkles. The middle and right
depicts a synthetic piece of cloth with 2 million triangles draped over a wardrobe. The coefficient of friction between
the cloth and the wardrobe is reduced, causing the cloth to fall. Small scale wrinkles and fluttering are introduced by
our wind drag model as shown in the right image. Notice how the synthetic example has more folds and wrinkles which
is due to it representing a larger size piece of cloth.

longer to complete. In Figure 9 we demonstrate that
we can handle many pieces of cloth, simulating 100
separate falling cloths with 10 thousand triangles each,
totaling 1 million triangles. We employ a wind-drag
model that produces interesting deformation and flutter,
facilitating inter and intra-cloth interactions. For each
vertex, we apply a linear drag in the normal direction as
a simple approximation to the pressure force, noting that
a better approximation would be quadratic in velocity.
We maintain a high wind speed near the ground in
order to push the lightweight pieces of cloth around,
causing further interactions and increasing the number
of dynamic collisions that must be resolved even after
the pieces of cloth hit the ground. At 5 minutes per
frame across two machines, this was our lowest cost
simulation.

The next examples demonstrate a single high resolu-
tion mesh with simulation parameters chosen to accen-
tuate folds and wrinkles and their subsequent collisions
and interactions. Figure 11 shows the spinning ball
example from [8], [10] with an increased resolution of 1.8
million triangles. To promote a very high level of detail
we avoid using overly stiff cloth and air drag, use high
sphere but relatively low ground friction, and raise the
vertical position of the sphere slightly so that the initial
draping of the cloth results in even more self collisions
at the base of the sphere. This example averaged 20
minutes per frame. Figure 13 shows the curtain and ball
example from [10] at a resolution of 1.7 million triangles.
The multiple layers of contact that form when the cloth
folds over itself make this example particularly difficult,
especially when the sphere pushes through the clump of
layers. The average frame time for the simulation was
45 minutes. Figure 15 shows a 2 million triangle cloth
draped over a wardrobe. We initially animated several
vertices of the cloth to obtain a more interesting draping
effect. After an initial settling period, we change the

coefficient of friction on the wardrobe allowing the cloth
to fall and form many folds and wrinkles under the effect
of wind drag. The cloth in this simulation resembles the
photograph of draped cloth in Figure 15 and the satin
depicted in Figure 2. This simulation averaged just over
6 minutes per frame. A summary of the resolutions and
timings of our examples is shown in Table 3.

We found parallelism essential as it allowed us to
scale to very high resolutions although it alone was not
responsible for our results. In fact we first parallelized
the [10] algorithm but found it insufficient, motivating
our other improvements. An example of speedup (on the
curtain and ball example) is shown in Figure 16. A break-

0 50 100 150 200 250 300 350 400
Frame

0

200

400

600

800

1000

1200

1400

T
im

e
 (

s
)

8 threads
4 threads
1 thread

Fig. 16. Comparison of performance of curtain and ball
simulation (Figure 13) with increasing numbers of proces-
sors. We also ran this simulation with 16 threads, though
there was not a significant speed up over 8 threads. This
is most likely due to our slow gigabit ethernet intercon-
nect.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

% of % of
Simulation Step total sim subpart
Compute repulsion pairs/history (step A) 3-7%
Inner time integration loop (step B) 45-60%

Applying per time step repulsions 2-4%
Detect & resolve collisions (step C) 37-48%

Applying collisions 20-45%
Computing swept bounding boxes 5-20%
Traversing hierarchies 5-15%
Inter-processor communication 40-70%

TABLE 2
A breakdown of the time spent in our algorithm.

down of where time is spent during our simulations is
shown in Table 2. Roughly speaking, half of the CPU
time is dedicated to collisions, while half of that (about
25% of the total CPU time) is spent on inter-processor
communication. This is probably due to our slow gigabit
ethernet interconnect. As commodity hardware vendors
continue the trend of adding more cores to a proces-
sor with dedicated internal interconnects, the situation
should improve.

9 CONCLUSION

We have addressed several issues in cloth simulation
to allow simulating high resolution cloth, enabling us
to represent and simulate intricate folds and wrinkles.
Using a multi-processor approach on commodity hard-
ware we demonstrated simulations of cloth with up to
2 million triangles. To make collisions more efficient
on these large meshes, we employ a history-based at-
traction/repulsion scheme that takes advantage of the
last known collision free state. Applying the repul-
sions/attractions at every time step reduces the fre-
quency at which the more expensive geometric collision
algorithm is used. In addition, to ensure resolution is
used effectively, we correctly handle cloth-object friction
which facilitates formation and preservation of folds and
wrinkles at both low and high resolutions.

ACKNOWLEDGMENT

Research supported in part by a Packard Foundation
Fellowship, an Okawa Foundation Research Grant, ONR
N00014-01-1-0620, ONR N0014-06-1-0393, ONR N00014-
06-1-0505, ONR N00014-02-1-0720, ONR N00014-05-1-
0479 for a computing cluster, ARO DAAD19-03-1-
0331, NIH U54-GM072970, NSF ACI-0323866, NSF IIS-
0326388, NSF ITR-0205671 and NSF CCF-0541148.

REFERENCES
[1] D. Baraff, A. Witkin, and M. Kass, “Untangling cloth,” ACM Trans.

Graph. (SIGGRAPH Proc.), vol. 22, pp. 862–870, 2003.
[2] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of cloth-

ing with folds and wrinkles,” in Proc. of the 2003 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 2003, pp. 28–36.

[3] L. Cutler, R. Gershbein, X. Wang, C. Curtis, E. Curtis, C. Curtis,
E. Maigret, and L. Prasso, “An art-directed wrinkle system for CG
character clothing,” in Proc. ACM SIGGRAPH/Eurographics Symp.
on Comput. Anim., 2005.

Example Resolution Avg. frame time Processors
Twisting Cloth 0.5 million 30 mins 16
Cloth Leaves 1 million 5 mins 8
Spinning Ball 1.8 million 20 mins 16
Curtain & Ball 1.7 million 45 mins 16
Wardrobe 2 million 6 mins 16

TABLE 3
List of our examples with their resolutions, average time
per frame, and number of processors they were run on.

[4] F. Cordier, H. Seo, and N. Magnenat-Thalmann, “Made-to-
measure technologies for an online clothing store,” IEEE Comput.
Graph. and Appl., vol. 23, no. 1, pp. 38–48, Jan 2003.

[5] P. Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and M.-P.
Cani, “Virtual garments: A fully geometric approach for clothing
design,” in Comp. Graph. Forum (Eurographics Proc.), 2006.

[6] R. McDonnell, S. Dobbyn, S. Collins, and C. O’Sullivan, “Per-
ceptual evaluation of LOD clothing for virtual humans,” in Proc.
ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2006.

[7] N. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle,
M. Lin, and D. Manocha, “Interactive collision detection between
deformable models using chromatic decomposition,” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 24, no. 3, pp. 991–999, 2005.

[8] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast
proximity computation among deformable models using discrete
Voronoi diagrams,” ACM Trans. Graph. (SIGGRAPH Proc.), vol. 25,
no. 3, pp. 1144–1153, 2006.

[9] P. Volino and N. Magnenat-Thalmann, “Resolving surface col-
lisions through intersection contour minimization,” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 25, no. 3, pp. 1154–1159, 2006.

[10] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of
collisions, contact and friction for cloth animation,” ACM Trans.
Graph., vol. 21, no. 3, pp. 594–603, 2002.

[11] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically de-
formable models,” Comput. Graph. (Proc. SIGGRAPH 87), vol. 21,
no. 4, pp. 205–214, 1987.

[12] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in
ACM SIGGRAPH 98. ACM Press/ACM SIGGRAPH, 1998, pp.
43–54.

[13] M. Keckeisen and W. Blochinger, “Parallel implicit integration
for cloth animations on distributed memory architectures,” EG
Symposium on Parallel Graphics and Visualization, 2004.

[14] B. Thomaszewski and W. Blochinger, “Parallel simulation of cloth
on distributed memory architectures,” EG Symposium on Parallel
Graphics and Visualization, 2006.

[15] B. Thomaszewski, S. Pabst, and W. Blochinger, “Exploiting par-
allelism in physically-based simulations on multi-core processor
architectures,” EG Symposium on Parallel Graphics and Visualization,
2007.

[16] R. Lario, C. Garcia, M. Prieto, and F. Tirado, “Rapid parallelization
of a multilevel cloth simulator using openmp,” In Third European
Workshop on OpenMP, 2001.

[17] S. Romero, L. Romero, and E. Zapata, “Rapid parallelization of a
multilevel cloth simulator using openmp,” EuroPar, 2000.

[18] F. Zara, F. Faure, and J.-M. Vincent, “Physical cloth animation on
a pc cluster,” In Fourth Eurographics Workshop on Parallel Graphics
and Visualisation, 2002.

[19] X. Provot, “Collision and self-collision handling in cloth model
dedicated to design garment,” Graph. Interface, pp. 177–89, 1997.

[20] S. Huh, D. N. Metaxas, and N. I. Badler, “Collision resolutions in
cloth simulation,” in Comput. Anim. IEEE, 2001.

[21] S. Huh and D. Metaxas, “A collision resolution algorithm for
clump-free fast moving cloth,” in Proc. of Comp. Graph. Intl., 2005.

[22] P. Volino, M. Courchesne, and N. Magnenat-Thalmann, “Versatile
and efficient techniques for simulating cloth and other deformable
objects,” Comput. Graph. (SIGGRAPH Proc.), pp. 137–144, 1995.

[23] P. Volino and N. Magnenat-Thalmann, “Accurate collision re-
sponse on polygonal meshes,” in Proc. of Comput. Anim., 2000,
pp. 154–163.

[24] J. Weil, “The synthesis of cloth objects,” Comput. Graph. (SIG-
GRAPH Proc.), pp. 49–54, 1986.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

[25] D. Terzopoulos and K. Fleischer, “Modeling inelastic deformation:
viscoelasticity, plasticity, fracture,” Comput. Graph. (SIGGRAPH
Proc.), pp. 269–278, 1988.

[26] J. A. Thingvold and E. Cohen, “Physical modeling with B-spline
surfaces for interactive design and animation,” Comput. Graph.
(SIGGRAPH Proc.), pp. 129–137, 1992.

[27] M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thalmann,
“Dressing animated synthetic actors with complex deformable
clothes,” Comput. Graph. (SIGGRAPH Proc.), pp. 99–104, 1992.

[28] H. Okabe, H. Imaoka, T. Tomiha, and H. Niwaya, “Three dimen-
sional apparel CAD system,” Comput. Graph. (SIGGRAPH Proc.),
pp. 105–110, 1992.

[29] D. E. Breen, D. H. House, and M. J. Wozny, “Predicting the
drape of woven cloth using interacting particles,” Comput. Graph.
(SIGGRAPH Proc.), pp. 365–372, 1994.

[30] D. H. House and D. E. Breen, Eds., Cloth modeling and animation.
A. K. Peters, 2000.

[31] M. Meyer, G. Debunne, M. Desbrun, and A. H. Barr, “Interactive
animation of cloth-like objects in virtual reality,” The Journal of
Visualization and Computer Animation, vol. 12, no. 1, pp. 1–12, 2001.

[32] D. Parks and D. Forsyth, “Improved integration for cloth sim-
ulation,” in Proc. of Eurographics, ser. Comput. Graph. Forum.
Eurographics Assoc., 2002.

[33] E. Boxerman and U. Ascher, “Decomposing cloth,” in Proc. ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim., 2004, pp. 153–
161.

[34] P. Volino and N. Magnenat-Thalmann, “Implicit midpoint inte-
gration and adaptive damping for efficient cloth simulation,”
Computer Animation and Virtual Worlds, vol. 16, pp. 163–175, 2005.

[35] S. Oh, J. Ahn, and K. Wohn, “Low damped cloth simulation,”
Visual Computer, vol. 22, no. 2, Feb. 2006.

[36] S. Hadap, E. Bangarter, P. Volino, and N. Magnenat-Thalmann,
“Animating wrinkles on clothes,” Proc. of Visualization, pp. 175–
523, 1999.

[37] M.-H. Choi, M. Hong, and S. Welch, “Modeling and simulation of
sharp creases,” in SIGGRAPH 2004 Sketches & Applications. ACM
Press, 2004.

[38] O. Etzmuss, M. Keckeisen, and W. Strasser, “A fast finite element
solution for cloth modelling,” in Pacific Graph., 2003, pp. 244–251.

[39] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements
for robust simulation of large deformation,” in Proc. of the ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim., 2004, pp. 131–
140.

[40] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” ACM Trans.
Graph. (SIGGRAPH Proc.), vol. 21, pp. 604–611, 2002.

[41] E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder, “Discrete
shells,” in Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp.
on Comput. Anim., 2003, pp. 62–67.

[42] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and E. Grinspun,
“A quadratic bending model for inextensible surfaces,” in Proc. of
Eurographics Symp. on Geometry Processing, 2006, pp. 227–230.

[43] B. Thomaszewski, M. Wacker, and W. Strasser, “A consistent
bending model for cloth simulation with corotational subdivision
finite elements,” in Proc. ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim., 2006.

[44] P. Volino and N. Magnenat-Thalmann, “Simple linear bend-
ing stiffness in particle systems,” in Proc. of the ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 2006, pp. 101–105.

[45] E. Grinspun, P. Krysl, and P. Schröder, “CHARMS: A simple
framework for adaptive simulation,” ACM Trans. Graph. (SIG-
GRAPH Proc.), vol. 21, pp. 281–290, 2002.

[46] P. Volino and N. Magnenat-Thalmann, “Efficient self-collision
detection on smoothly discretized surface animations using ge-
ometrical shape regularity,” in Proc. of Eurographics, ser. Comput.
Graph. Forum, vol. 13. Eurographics Assoc., 1994, pp. C–155–
166.

[47] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid simulation
of deformable solids,” in Proc. of ACM SIGGRAPH/Eurographics
Symp. on Comput. Anim., 2007, pp. 81–90.

[48] P. Volino and N. Magnenat Thalmann, “Collision and self-collision
detection: Efficient and robust solutions for highly deformable
surfaces,” in Comp. Anim. and Simulation, D. Terzopoulos and
D. Thalmann, Eds. Springer-Verlag, 1995, pp. 55–65.

[49] G. van den Bergen, “Efficient collision detection of complex
deformable models using AABB trees,” J. Graph. Tools, vol. 2, no. 4,
pp. 1–14, 1997.

Andrew Selle received his B.S. in Computer
Science and Mathematics from the University
of Wisconsin in 2003. While there, he was an
undergraduate research assistant working on
computer animation research. He plans to re-
ceive his Ph.D. in Computer Science at Stanford
University in 2008. While there, he also was
a consultant at Intel Corporation, focusing on
physical simulation’s mapping to multicore ar-
chitectures. He has also been a consultant for
Industrial Light + Magic for the last two years,

receiving screen credits for his work on “Poseidon,” “Evan Almighty” and
“Pirates of the Caribbean: At World’s End.” He will begin work at Disney
Animation in Summer, 2008.

Jonathan Su received his B.S. in Computer
Engineering from the University of Washington
in 2006. He was awarded the National Science
Foundation Graduate Research Fellowship and
is currently pursuing his Ph.D. at Stanford Uni-
versity. For the past year he has been a con-
sultant at Intel Corporation where he has been
studying the scalability of physical simulation
algorithms on multicore architectures.

Geoffrey Irving received his Ph.D. in Computer
Science from Stanford University in 2007, and
his B.S. in Mathematics and Computer Science
from the California Institute of Technology in
2003. He was awarded a National Science Foun-
dation Graduate Research Fellowship and three
Caltech Upperclass Merit Awards. For the last
three years at Stanford, he was a consultant
at Pixar Animation Studios focusing on fluid
dynamics and elastic character simulation, and
received screen credits for his work on “Rata-

touille” and the upcoming film “WALL•E.” He is currently a member of
the Production Engineering Group at Pixar.

Ron Fedkiw received his Ph.D. in Mathemat-
ics from UCLA in 1996 and did postdoctoral
studies both at UCLA in Mathematics and at
Caltech in Aeronautics before joining the Stan-
ford Computer Science Department. He was
awarded an Academy Award from The Academy
of Motion Picture Arts and Sciences, the Na-
tional Academy of Science Award for Initiatives
in Research, a Packard Foundation Fellowship,
a Presidential Early Career Award for Scientists
and Engineers (PECASE), a Sloan Research

Fellowship, the ACM Siggraph Significant New Researcher Award, an
Office of Naval Research Young Investigator Program Award (ONR
YIP), the Okawa Foundation Research Grant, the Robert Bosch Faculty
Scholarship, the Robert N. Noyce Family Faculty Scholarship, two
distinguished teaching awards, etc. Currently he is on the editorial
board of the Journal of Computational Physics, Journal of Scientific
Computing, SIAM Journal on Imaging Sciences, and Communications
in Mathematical Sciences, and he participates in the reviewing process
of a number of journals and funding agencies. He has published over
80 research papers in computational physics, computer graphics and
vision, as well as a book on level set methods. For the past seven years,
he has been a consultant with Industrial Light + Magic. He received
screen credits for his work on “Terminator 3: Rise of the Machines”,
“Star Wars: Episode III - Revenge of the Sith”, “Poseidon” and “Evan
Almighty.”

