
Developing fractal curves

Geoffrey Irving∗ Henry Segerman†

Version 1, October 31, 2012

Abstract
Many fractal curves can be produced as the limit of a sequence of polygonal curves,

where the curves are generated via an iterative process, for example an L-system. One can
visualise such a sequences of curves as an animation that steps through the sequence. A
small part of the curve at one step of the iteration is close to a corresponding part of the
curve at the previous step, and so it is natural to add frames to our animation that con-
tinuously interpolate between the curves of the iteration. We introduce sculptural forms
based on replacing the time dimension of such an animation with a space dimension, pro-
ducing a surface. The distances between the steps of the sequence are scaled exponentially,
so that self-similarity of the curves is reflected in self-similarity of the surface. For surfaces
based on the constructions of certain fractal curves, the approximating polygonal curves
self-intersect, which means that the resulting surface would also self-intersect. To fix this
we smooth the polygonal curves. We outline two very different approaches to producing
and smoothing the geometry of such a “developing fractal curve” surface, one based on a
direct parameterisation, and the other based on Loop subdivision of a coarse polygonal
control mesh.

1 Fractal Curves

Space filling and other kinds of fractal curves have been a popular subject for many mathe-
matical artists. See for example Helaman Ferguson [3] and Carlo Séquin [16]. Often a fractal
curve is generated as the limit of a sequence of polygonal curves (c1, c2, . . .), where each step
cn is obtained from its predecessor cn−1 via some local process. By locality of the process, we
mean that a small part of cn is close to, and determined by only a small part of cn−1. For
example, for the terdragon curve (Davis-Knuth [2], see Figure 1), each edge of cn−1 is replaced
by three edges in cn close to the edge of cn−1, and the positions and orientations of those three
edges depend only on the position and orientation of the edge of cn−1. One way to formalise
this notion of locality is to say that the curve can be generated via an L-system.

L-systems are named after Aristid Lindenmayer, the biologist who invented the concept as
a way to describe elementary plant development [11]. An L-system is a string rewriting system.
We have an alphabet of symbols V , a string of symbols ω defining the start of the system,
or axiom, and a set of production rules P determining how we produce a new string from an
old string. The L-system grammar is the collection of these three parts, G = (V, ω, P ). This
generates a sequence of strings by repeatedly applying the rules P , starting with the axiom ω.
∗Email: irving@naml.us, Otherlab, San Francisco, CA, United States
†Email: segerman@unimelb.edu.au, Department of Mathematics and Statistics, University of Melbourne,

VIC 3010, Australia

1



Example 1.1. If we take the following L-system grammar

Gterdragon = ({F,−,+}, F, {F 7→ F−F+F})

then the output of the L-system is the following sequence of strings.

F
F − F + F

F − F + F − F − F + F + F − F + F
...

Note that not all symbols need to have a replacement rule.

Given such an L-system, we may view the produced strings as instructions for building a
curve in a “turtle graphics” fashion [15]. That is, we start somewhere on the plane, with a spec-
ified “forward facing” direction. We read the input string from left to right, and interpret the
symbols as actions to perform. In the above example, we make the following interpretations:

F move forward one unit
− turn right 120◦

+ turn left 120◦

The resulting sequence of curves are the steps in the construction of the terdragon curve, shown
in Figure 1.

Figure 1: Six steps in the construction of the terdragon curve.

There are a few things to note about these curves. First we have chosen the starting di-
rection and the step size for our turtles so that they all end at the same position relative to
the starting position. With these modifications, we can see that each line segment is replaced
by three segments in a zig-zag pattern at the next step. Second, we have rounded the corners
slightly. If we did not do this then later versions of the curve would self-intersect. It would be
more faithful to the actual curve to draw it with the self-intersections, but this way we can see
that it is indeed a curve (rather than a graph), and also see the order in which it traverses the
various edges. However, an unfortunate feature of the curves in Figure 1 is that the radius of
the rounding of the corners is fixed, rather than depending on the lengths of the line segments

2



of the curve. This makes the curves at different steps locally less similar to each other than
they could be. We can fix this, as in Figure 2, by having the rounding radius depend on the
lengths of the original line segments. Here, we have chosen the rounding so that the path is a
union of arcs of circles, other than at the endpoints.

Figure 2: Six steps in the construction of the terdragon curve, with rounding at the corners
based on the lengths of the line segments at each step.

We note a couple of numerical features of this process: As mentioned before, each line
segment is replaced by three line segments, and the lengths of the line segments at each new
stage are scaled down by 1/

√
3 from the previous stage.

Another beautiful example is the (Heighway) dragon curve [4, 2], with L-system

Gdragon = ({F,X, Y,−,+}, FX, {X 7→ X−Y F, Y 7→ FX+Y }).
In this case, F is again interpreted as a move forwards, − and + are turns by 90◦, while

X and Y are ignored when we convert to a curve. This time one line segment is replaced by
two, each of which is scaled down by a factor of 1/

√
2. See Figures 3 and 4.

2 Time ↔ Space

Given the locality of the modification process, it is natural to think about interpolating be-
tween the steps to make a continuous process. One could continuously morph between the
different steps of the construction. This has been done by Jeffrey Ventrella, and animations
of this for the dragon, terdragon and many other fractal curves are available on YouTube. To
our knowledge however, nobody has yet considered replacing the time dimension with a space
dimension, converting the sequence of curves in R2 into a surface in R3.

In Ventrella’s animations, each successive step of the construction is animated in an equal
period of time. While this makes sense in the 2-dimensional animated setting, we found that
there is a better choice for surfaces. In particular, if we choose the vertical separation carefully,
then the resulting surface retains the self-similarity properties that the curves do. See Figure 5.

3



Figure 3: Six steps in the construction of the dragon curve.

Figure 4: Six steps in the construction of the dragon curve, with rounding at the corners based
on the lengths of the line segments at each step.

This shows the first three steps in the dragon curve construction (with no rounding), connected
to each other in the simplest way possible, by linear interpolation. If the surface is to exhibit
the same self-similarity that the curves do, then we must have that l1/h1 = l2/h2. Since we
know for this sequence of curves that l2 = l1/

√
2, then we get that h2 = h1/

√
2.1 In general,

to ensure self-similarity in the surface, the vertical separation between two adjacent curves
should be scaled to be proportional to the lengths of the line segments in, say, the lower curve.
(Note that the lengths of line segments in the upper curves are a constant multiple of those
in the lower, so we could equally say that the vertical separations should be proportional to
the line segment lengths in the upper curve!)

1As an interesting consequence, an interpolating surface for the dragon curve sequence can be made using
isosceles right triangles and equilateral triangles, as shown in the figure.

4



l
0

l
1

h
1

h
2

l
2

Figure 5: The first three steps of the dragon curve construction, joined by a linearly inter-
polating surface. The vertical separation between the curves is chosen so that the surface is
self-similar.

3 Implementation

Now that we have a rough idea of the surfaces we want to build, we have some choices in
exactly how to define the surface, and how to turn it into a 3-dimensional volume either for
3D printing or rendering. In particular, we have to deal with thickening up a 2-dimensional
surface so that it has nonzero volume. One could (correctly) argue that the above discussion
on similarity also applies to the thickness of the thickened surface. That is, if our sculpture
is to retain the self-similarity properties of the sequence of curves, then the thickness should
also scale in the same way. See Figure 6 for steps of the terdragon curve sequence, thickened
in a self-similar way.

Figure 6: Three of the steps in the construction of the terdragon curve, with line thickness
proportional to line segment length.

However, there are some downsides to doing things this way in the case of a physical sculp-
ture. Depending on the material used, the thinnest objects that can be safely 3D printed are
a little under a millimetre thick. This puts a lower bound on how thin the lowest level of the
surface can be, and so puts a lower bound on how thin the highest level can be, assuming the
self-similarity condition. In our case, a developing surface representation for the terdragon
curve showing 6 levels would have the top being

√
3
6−1 ≈ 15.6 times thicker than the bottom.

This would be significantly over-engineered in terms of strength, and would also be more ex-
pensive. For these reasons, we decided to ‘cheat’ on the thickness for 3D printing, inviting
the viewer to interpret the sculpture as a 2-dimensional surface, with the thickness of the ob-
ject a necessary evil only. However, our computer renders follow the “correct” thickness scaling.

5



As discussed above, for some fractal curves the steps of the construction self-intersect.
Since our surface interpolates between the curves, it will also self-intersect unless we smooth
it in some way. In principle, one could smooth only in the horizontal slices, and use linear in-
terpolation so connect the curves to each other vertically. However, it seems better to smooth
in both directions from an aesthetic point of view.

Given all of the above requirements, the two authors of this paper approached the problem
of designing a sculpture of a developing fractal curve in very different ways. In the next two
sections, we outline our strategies.

3.1 Direct parameterisation

H.S.’s solution will perhaps be more familiar to many of our readers, so we discuss it first. With
this strategy, we build a function of three variables F : [0, 1]× [0, 1]× [−ε, ε]→ R3, mapping a
thin cuboid with coordinates (s, t, r) into R3. The first coordinate, smoves us between different
curves in the construction of the fractal curve, the second coordinate t moves us along each
curve (and interpolated curves between them), and the third coordinate r corresponds to the
thickened direction. We could abstractly define a function involving infinitely many steps of
the construction, so that the line {(1, t, 0) | t ∈ [0, 1]} maps to the fractal curve itself. However,
for making an actual physical sculpture, we will cut the process off at some point.

3.1.1 Smooth curves

For the jth step of the construction, we are given a polygonal curve pi : [0, n] → R3, where
pi is linear on [j, j + 1], j ∈ Z, and constant height depending on i. We use Bézier curves to
smooth these out. A cubic Bézier curve, evaluated over an interval, can interpolate between
start and end points with specified tangent vectors at the start and end. See Figure 7. For
the start and end points for each Bézier curve, we take the midpoints of the line segments of
pi, together with the start of the first edge and the end of the last. That is, our points are
{pi(t) | t = 0, 12 ,

3
2 , . . . ,

2n−3
2 , 2n−12 , n}. We choose the magnitudes of the tangent vectors so

that the curves approximate arcs of circles. After scaling the input appropriately, this gives
us piecewise polynomial functions ci : [0, 1]→ R3.

Figure 7: Smoothing a polygonal curve using cubic Bézier curves.

Next, we need to interpolate between the different curves. We can use exactly the same
techniques for this as well! Before we constructed polynomials in t, with coefficients being

6



vectors in R3 that interpolated between points in R3. Now we construct a polynomial in
a new variable s, with coefficients being polynomials in t, which interpolates between our
polynomials ci. The endpoints for the ith Bézier polynomial are the vector polynomials ci and
ci+1. For the tangent polynomial at the ith level, we use (ci+1(t)− ci(t))/2, apart from at the
first and last levels, where we use a constant polynomial whose value is a downwards pointing
vector. Again, we scale the input so that s ranges between 0 and 1.

3.1.2 Thicken to a function of 3 variables

We now have a parametric function of two variables, say f : [0, 1]× [0, 1]→ R3, where f(s, t)
gives a point on our desired surface. We can then convert this into our function F of three
variables as follows. First we define a normal function using the vector cross product:

n(s, t) :=
∂f

∂s
(s, t)× ∂f

∂t
(s, t)

Then we define F by
F (s, t, r) := f(s, t) + n(s, t)r.

This would give a constant thickness surface. In fact, this choice would also run into problems
of structural strength of the 3D printed object. The thickness of the surface would have to
be relatively thin to avoid collision with other parts of the surface near the last level. Then
constant thickness would force us to have large thin sheets near the first level, which would be
relatively fragile. To fix this problem, we used a decreasing function of s for r that interpolates
between a large enough thickness to safely print large sheets for s near 0, and a small enough
thickness to avoid collisions for s near 1. In fact the function we chose is also exponential, but
with a slower rate of decrease than that given by similarity.

3.1.3 Build the surface

We are now in a position to build the geometry that becomes the data sent to a 3D printer
to produce the sculpture. We used NURBS surfaces (which can be thought of as generali-
sations of Bézier curves) to define the boundary of the object. These can be thought of as
parameterised surface patches. In principle, one could take each of the six rectangular faces
of the cuboid [0, 1] × [0, 1] × [−ε, ε] and map each forwards using the function F to produce
six parameterised surface patches that define the boundary of our sculpture. However, there
are some technical difficulties in following this strategy. In particular, the data specifying a
NURBS surface patch gives an approximately equal density of information about the geometry
at different parts of the patch. In the case of F (s, t, ε) however, the surface becomes far more
complex (exponentially so) as s increases. For this reason, we need to break up the rectangles
in the s and t directions, and use more NURBS surface patches for larger s.

We also want to introduce a pattern of holes in the surface. There are a number of benefits
to doing this. First, punching holes in the surface reduces the total volume of the object,
and so the cost in production. Second, it allows us to see partially through the surface to
other features behind. Third, it allows us to highlight features of the parameterisation of the
surface. In our case, it is natural to punch holes in a way that respects and highlights the
self-similarity of the surface. For the surface generated from the dragon curve, the natural
repeating “tile” for the object is the five sided polygon made from three triangles in Figure 5.

7



See also Figure 8(a). We punch a hole in each of these tiles. Figure 8(b) shows a subdivision
of a neighbourhood of the edges of the tile into tapered quadrilaterals, which is consistent
under the similarity transforms to the other tiles. When we thicken this pattern up in the
normal direction, we get a pattern of tapered cuboids, the boundary faces of which give our
parameterised surface patches.

(a) (b)

Figure 8: In (a), the repeating tile for the developing dragon curve. In (b), we subdivide a
neighbourhood of the edges of the tile into tapered quadrilaterals.

See Figure 14 for the resulting sculpture. For sculptures based on the other fractal curves,
we vary the pattern of tapered quadrilaterals. For the terdragon curve for example, the
bottom edge of the tile is divided into three segments rather than two, and we introduce an
extra horizontal bar halfway up the tile. We add the extra horizontal bar because that the
terdragon curve has greater changes between iterations, in comparison with the dragon curve
(primarily because one line segment becomes three, rather than the two line segments for the
dragon curve). This means that the surface would be broken up too much if there were only a
single large hole in each tile. The extra horizontal bar maintains the visual continuity of the
surface. To produce designs based on curves with an even larger number of edges replacing a
single edge, we would further subdivide the respective tiles.

3.2 Loop subdivision

G.I. chose a more general route to smooth surfaces using the technique of Loop subdivision
[12] with the modifications in [13]. We start with the original unsmoothed polygonal curves at
each level (Figure 3 without the rounded corners), shift each internal vertex inwards a small
amount to avoid self intersections, and join the curves at consecutive levels into a minimal
triangular mesh as shown in Figure 5. The result is a triangle mesh homeomorphic to [0, 1]2,
which we will denote T0. Starting with this coarse control mesh, Loop subdivision defines a
sequence of subdivided meshes {Tn} converging towards a smooth limit surface.

Before giving the details in the surface case, we describe the analogous process for a
one dimensional curve. Say we have a doubly infinite sequence of points {p0,i}i∈Z defining a
piecewise linear control curve γ0 at level 0. To define a refined curve γn+1 from γn, we introduce
an additional vertex between each pair of vertices of γn. The most general symmetric way to

8



Figure 2: Quadrisection of a single triangular face.

where n is the valence of the vertex. The edge mask assigns weight to the
vertices of the two triangles that share the edge, and do not depend on vertex
valence.

1
8

3
8

α

β

β

β

β
β

β

β 3
8

1
8

Figure 3: Vertex mask and edge mask used in Loop’s algorithm.

Loop’s algorithm is a generalization of binary subdivision of C2 trilaterally
symmetric quartic box splines[14]. If the initial control mesh is a regular trian-
gulation (all vertices are valence 6), then the limit surface of Loop’s algorithm
is a quartic box spline with continuous curvatures.

4 A Modified Triangle Subdivision Algorithm

We propose a modified version of Loop’s algorithm where the edge masks have
larger support. The proposed edge mask is depicted in Figure 4. The mask

4

Figure 2: Quadrisection of a single triangular face.

where n is the valence of the vertex. The edge mask assigns weight to the
vertices of the two triangles that share the edge, and do not depend on vertex
valence.

1
8

3
8

α

β

β

β

β
β

β

β 3
8

1
8

Figure 3: Vertex mask and edge mask used in Loop’s algorithm.

Loop’s algorithm is a generalization of binary subdivision of C2 trilaterally
symmetric quartic box splines[14]. If the initial control mesh is a regular trian-
gulation (all vertices are valence 6), then the limit surface of Loop’s algorithm
is a quartic box spline with continuous curvatures.

4 A Modified Triangle Subdivision Algorithm

We propose a modified version of Loop’s algorithm where the edge masks have
larger support. The proposed edge mask is depicted in Figure 4. The mask

4

weights 1 − λ0, γ0, . . . , γn−1 will form a partition of unity, so λ0 =
∑

γi. This
is identical to the approach taken in [11, 17], however our method of deriving
the weights γi is entirely different.

γ0

γ1

γn-1

γ2

γ3

γn-2

γn-3

1-λ0

Figure 4: Modified edge mask for the new algorithm.

We point out that such a modified edge mask will be asymmetric with re-
spect to the two incident vertices. That is, the position of a new mesh vertex
associated with an edge will differ depending on which of the two incident ver-
tices is used to determine the new edge mask. This ambiguity is handled by
examining the valence of the two incident vertices:

• If both vertices are ordinary, use the original edge mask.

• If one vertex is extraordinary, use the edge mask associated with that ver-
tex.

• If both vertices are extraordinary, use both masks and average the result.

Note that the last case above will only occur during the first level of subdi-
vision, since all extraordinary vertices are surrounded by ordinary vertices after
one iteration. This means that only edges that are incident on an extraordinary
vertex will use a modified edge mask. A modified edge mask is determined by
the valence n of the incident extraordinary vertex; rotated versions of a sin-
gle edge mask are used to compute all the new edge points adjacent to the
extraordinary vertex.

5 Subdivision Matrix Parameterization

The subdivision matrix, used to analyze the smoothness properties of a subdivi-
sion surface at an extraordinary vertex, transforms a spline ring at subdivision

5

τ =
3

8
+

1

4
cos

2π

d

α =





1− τ(4+τ(5τ−8))
2(1−τ) + τ2, d ≥ 6

81−5
√
5

128 , d = 5
1
2 , d = 4
7
16 , d = 3

β =
1− α
d

uj = cos
2πj

d

γj =





2τ3

d(1−τ)(1 + uj)
(
1
τ − 3

2 + uj
)2
, d ≥ 6

3+
√
5

32

(
5−
√
5

5 + uj

)2
, d = 5

1
2

(
1
2 + 3

8uj
)2
, d = 4

1
6

(
5
4 + uj

)
, d = 3

λ0 =
∑

j

γj

Figure 9: Loop subdivision stencils for vertices of degree d (left), ordinary edges adjacent to
two degree 6 vertices (middle), and extraordinary edges incident to a degree d vertex (right).
If an edge touches two non-degree 6 vertices, the right stencil is applied in both directions
and averaged. Each stencil defines the position of the large dot indicating a vertex in the
subdivided mesh indicated as a convex combination of vertices from the mesh from one level
up. Reproduced with permission from [13].

define the positions of the new vertices as averages of immediate neighbours is

pn+1,2i = αpn,i +
1− α
2

(pn,i−1 + pn,i+1)

pn+1,2i+1 =
1

2
(pn,i + pn,i+1)

where α ∈ [0, 1]. That is, a new vertex is positioned at the average position of the two vertices
it comes between, while the old vertices are moved in a way depending on their positions and
the positions of their neighbours. The question is how much weight to give to the old position
of a vertex, versus the old positions of its neighbours. The weight α can be decided on by
considering the behavior of the subdivision process around one of the vertices, say pn,0. The
nth neighbourhood (pn,−1, pn,0, pn,1) is a linear function of the (n− 1)th neighbourhood, and
eigenanalysis of the resulting operator can be used to determine the local smoothness of the
curve. It turns out that the limit curve is C2 continuous if and only if α = 3/4, though we
omit the details. In fact, the α = 3/4 case reduces to cubic B-spline interpolation [10].

In the surface case, Tn is refined to Tn+1 by introducing a new vertex along each edge,
and splitting each triangle into four child triangles. Each vertex position in Tn+1 is defined as
a convex combination of its local neighbourhood in Tn. Vertices on the boundary of a mesh
use the curve subdivision rules given above if smoothness is desired, or are left at their Tn

9



positions to indicate a sharp corner (we used no sharp corners in our examples). The weights
for interior vertices are shown in the stencils in Figure 9. Each vertex in Tn is moved to a
new position in Tn+1, which is a weighted average between its position and the average of its
neighbours, as in the left diagram of Figure 9. Each remaining vertex in Tn+1 corresponds to
an edge in Tn. If both endpoints of the edge are of degree 6 then the position is computed as
in the middle diagram of Figure 9, using only the positions of the vertices of the two triangles
adjacent to the edge in Tn. Otherwise (that is, if either endpoint is an extraordinary vertex
of degree 6= 6), the right diagram of Figure 9 is used, involving all vertices adjacent to each
extraordinary vertex.

See Figure 10 for the first levels of Loop subdivision on the polygonal surface given by the
dragon curve construction.

Figure 10: Levels 0 through 5 of Loop subdivision for a simple dragon surface. The final levels
are indistinguishable from the limit surface.

Away from an extraordinary vertex of degree 6= 6, the limit surface of the Loop subdivision
process reduces to cubic B-splines. At an extraordinary vertex, the surface degrades to C1

with bounded but discontinuous curvature. As in the curve case, the weight formulas above
can be derived via eigenanalysis of the linear neighbourhood subdivision operator around a
vertex to ensure bounded curvature and non-negative weights [13].

Unfortunately for curvature continuity, extraordinary vertices with degree ≥ 6 abound in
our control meshes: for the dragon curve (as in Figure 5), internal vertices alternate between
degree 6 and 7 (see Figure 13(a)). The surface we wish to build is combinatorially equivalent
to a square, and of course it is possible to triangulate a square so that all (interior) vertices
have degree at most 6. However, this ignores the self-similarity of the desired geometric sur-
face. From a combinatorial point of view, all of our surfaces can be seen as being made up of
fundamental tiles as in Figure 8(a). That is, we have a square tile, where the bottom edge is
subdivided n times, where n depends on the iterative process that generates the fractal curve.
We call this an n-way branching tile. In the two examples we have seen so far, the dragon
curve has n = 2, while the terdragon curve has n = 3. The left side of the tile is glued to the
right side of another tile and vice versa, while each of the segments at the bottom of the tile is
glued to the top side of another tile. Thus, the tile fills the half plane R×(0,∞) as in Figure 11
(for n = 2). A self-similar triangulation of the surface is a triangulation which subdivides the
tiling of the surface, so that the induced triangulations of the tiles are combinatorially identical.

So, our control mesh is a self-similar triangulation (which is clearly a natural choice), but it
has many extraordinary vertices. Due to poor results in the past with similar meshes, we were

10



Figure 11: The fundamental tile with 2-way branching covers the half plane R× (0,∞).

initially concerned that Loop subdivision would fail to produce aesthetically pleasing surfaces.
It is fortunate that this fear proved unfounded, because a self similar triangulation with all
vertices of degree 6 is impossible for our surfaces, as we will see in Corollary 3.2. To show this,
we will produce a nonnegatively curved metric on any purely degree 6 self-similar triangulation
where the area of geodesic balls grows exponentially, which contradicts the following simple
theorem (see e.g. Theorem 107 of [1] for a tightened, generalized version):

Proposition 3.1. Let M be a Riemannian surface which is flat except at a discrete set of
positively curved cone points with surrounding angle < 2π (a so-called Euclidean cone metric).
Then the area of a geodesic ball of radius r around any point is at most πr2.

Proof. Let p be a flat point of M with tangent space Tp, Br(p) the ball of radius r around
p ∈ M , and Dr(0) the ball (actually a Euclidean disk) of radius r around 0 ∈ Tp. Let
Sr ⊂ Dr(0) be the set of vectors for which the exponential map exp : Tp → M is uniquely
defined. That is, Sr consists of all v ∈ Tp for which exp

(
[0, 1)v

)
, the geodesic from p moving in

the direction of v, up to but not including the point at distance r, consists of only flat points.
We will show that exp(Sr) = Br(p). If not, choose q ∈ Br(p) \ exp(Sr) and let γ : [0, 1]→M
be a minimum length path from p to q. Since q /∈ exp(Sr), there must be some 0 < t < 1 such
that γ(t) is a cone point; pick the first such t. Since the total angle around γ(t) is strictly
less than 2π, the angle on one of the two sides of γ must be strictly less than π. But then
we can shorten γ by moving it slightly to that side as shown in Figure 12, contradicting the
minimality of γ. This shows that exp(Sr) = Br(p). Since exp is metric preserving on Sr, we
have

area(Br) = area(exp(Sr)) ≤ area(Sr) = πr2

The same inequality holds if p is a cone point by taking limits.

Corollary 3.2. Suppose that we have a self-similar triangulation of the half plane tiled with
n-way branching tiles. Then there exists a vertex with degree > 6.

In fact, because of the self-similarity, there must be at least one extraordinary vertex per
tile.

11



Figure 12: Consider a piecewise geodesic curve γ in a surface which is flat except at positively
curved cone points such as c. Since c is positively curved, its surrounding angle satisfies
α + β < 2π. Thus one of the two sides has angle < π, say α < π, and the length can be
reduced by shifted slightly towards this side to produce γ′.

Proof. Suppose M is any manifold triangulation with vertex degrees ≤ 6. Following [7], we
give M a Euclidean cone metric by making each triangle equilateral with unit length sides.
This metric is flat except at vertices of degree d < 6, which are positively curved with total
surrounding angle 2πd/6 < 2π. In the case of a branching self-similar triangulation, the
diameter of each tile is constant, so the volume of a ball grows asymptotically exponentially
since it will encompass exponentially many tiles (see Figure 11). This contradicts Proposition
3.1, so at least one vertex of degree > 6 must exist.

We originally searched for a combinatorial proof of Proposition 3.2 in terms of “average
vertex degree”, but failed due to the counterexample shown in Figure 13(b). Indeed, since the
boundary of a region in a self-similar tiling is an asymptotically constant fraction of the size
of the interior, it is unclear whether or not the concept of average vertex degree can be well
defined.

As in the case of explicit parameterization, the final step in our construction is to thicken
the surface into a region of nonzero volume. To do this in the Loop subdivision case, we define
a scalar thickness field on the vertices of the control mesh, scaling exponentially as a function
of level. In the case of rendered images there is no physical minimum thickness constraint, and
we are free to use the “correct” exponential scaling to ensure self-similarity of the 3D volume.
Since the stencil weights in the Loop subdivision process are a function of topology only, we
can apply these same weights to the scalar thickness field to define a sequence of refined scalar
fields on the vertices of each refined mesh, converging towards a smooth limit field. We then

12



4 8
67

(a) (b)

Figure 13: The “average vertex degree” of a self-similar triangulation of a 2-way branching
tiling tiling is not constant: (a) has average degree 6.5 while (b) has average degree 6.

offset along the normal direction by half the thickness to each side, and connect boundaries
to produce a closed mesh.

4 Results

We applied our techniques to the constructions of a number of fractal curves. The associated
L-system grammars are listed in Table 1, together with the turning angle associated to the −
and + symbols. For completeness, we list the dragon and terdragon curves again here. We
give the L-system refinement level in each figure caption, counting the L-system axiom as level
0.

Table 1: L-system grammars.

Name Alphabet Axiom Production rules Angle
Dragon curve {F,X, Y,−,+} FX {X 7→ X−Y F, Y 7→ FX+Y } π/2
Terdragon curve {F,−,+} F {F 7→ F−F+F} 2π/3

Hilbert curve {F,X, Y,−,+} +Y F−XFX−FY+
{X 7→ +Y F −XFX − FY+,
Y 7→ −XF + Y FY + FX−} π/2

Sierpinski
arrowhead curve

{F,X, Y,−,+} XF
{X 7→ Y F −XF − Y,
Y 7→ XF + Y F +X} π/3

Koch snowflake {F,−,+} F ++F ++F {F 7→ F−F++F−F} π/3

Gosper curve {F,X, Y,−,+} FX

{X 7→ X +Y F ++Y F −FX −
−FXFX−Y F+,
Y 7→ −FX+Y FY F++Y F+FX−
−FX−Y }

π/3

4.1 Direct parameterisation

In Figures 14 and 15 we show photographs of the resulting 3D printed sculptures for the dragon
curve and the terdragon curve. We also applied our techniques to the Hilbert curve [6] and
the Sierpinski arrowhead curve [14], see Figures 16 and 17.

13



Figure 14: The developing dragon curve up to level 10 (constructed by direct parameterisation)
as a 3D print.

14



Figure 15: The developing terdragon curve up to level 6 (constructed by direct parameterisa-
tion) as a 3D print.

15



Figure 16: The developing Hilbert curve up to level 4 (constructed by direct parameterisation)
as a 3D print.

16



Figure 17: The developing Sierpinski arrowhead curve up to level 6 (constructed by direct
parameterisation) as a 3D print.

17



4.2 Loop subdivision

Renderings of Loop subdivided fractal surfaces for the dragon and terdragon curves are shown
in Figures 18, 19, and 20. We also rendered developing versions of the Koch snowflake [9]
and Peano-Gosper curve [5], see Figures 21 and 22. These images were generated using the
Mitsuba physically based renderer [8] with guidance from Eugene d’Eon.

The combinatorial structure of our surfaces is self-similar in the sense that each tile in the
self-similar triangulation is triangulated in the same way. However, we can ask if combinato-
rial similarity is reflected in geometric similarity of the generated surface. By construction, in
level 0 of the Loop subdivision all tiles are similar to each other. When we start smoothing
however, this can change. The tiles of the renders are collected into equivalence classes un-
der the similarity relation, and all tiles in each equivalence class given the same colour. The
number of these equivalence classes grows with refinement level for the first few levels then
reaches a constant due to self-similarity. Since the shape of a Loop subdivided tile depends
on vertices up to two steps away in the control mesh as well as proximity to the boundary,
these numbers are fairly large: 131 for the dragon curve, 135 for the terdragon curve, 125 for
the Koch snowflake, and 1487 for the Gosper curve.

The code for the Loop subdivided variant of developing fractal curves is available at https:
//github.com/otherlab/fractal under a BSD license.

References

[1] Marcel Berger, A panormaic view of Riemannian geometry, Springer Verlag (2003).

[2] C. Davis and D. E. Knuth, Number Representations and Dragon Curves, Journal of Recre-
ational Mathematics, 3 (1970), 66–81 and 133–149.

[3] Helaman Ferguson, Two Theorems, Two Sculptures, Two Posters, American Mathematical
Monthly, 97 (1990), no. 7, 589–610.

[4] Martin Gardner, Mathematical Games: An Array of Problems that Can Be Solved with
Elementary Mathematical Techniques, Scientific American, March 1967, 124–129.

[5] , Mathematical Games: In which “monster” curves force redefinition of the word
“curve”, Scientific American, 235 (1976), 124–133.

[6] David Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Mathematische
Annalen 38 (1891), no. 3, 459–460.

[7] Ivan Izmestiev, Robert B. Kusner, Günter Rote, Boris Springborn, and John M. Sullivan,
There is no triangulation of the torus with vertex degrees 5, 6, . . . , 6, 7 and related results:
Geometric proofs for combinatorial theorems, arXiv:1207.3605 (2012).

[8] Wenzel Jakob, Mitsuba renderer, http://www.mitsuba-renderer.org (2010).

[9] Helge von Koch, Sur une courbe continue sans tangente, obtenue par une construction
géométrique élémentaire, Arkiv för Matematik, Astronomi och Fysi, 1 (1904), 678–704.

18



Figure 18: A render of the developing dragon curve up to level 17 (constructed by Loop
subdivision).

19



Figure 19: Renders of the developing dragon curve up to level 13 (constructed by Loop sub-
division). 20



Figure 20: Renders of the developing terdragon curve up to levels 10 (top) and 8 (bottom)
(constructed by Loop subdivision).

21



Figure 21: Renders of the developing Koch snowflake up to level 6 (constructed by Loop
subdivision). 22



Figure 22: Renders of the developing Gosper curve up to level 5 (constructed by Loop subdi-
vision).

23



[10] Richard Riesenfeld and Jeffrey Lane, A theoretical development for the computer genera-
tion and display of piecewise polynomial surfaces., IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-2(1), 35–46 (1980).

[11] Aristid Lindenmayer, Mathematical models for cellular interaction in development, Parts
I and II, Journal of Theoretical Biology 18 (1968), 280–315.

[12] Charles Loop, Smooth Subdivision Surfaces Based on Triangles, M.S. Mathematics thesis,
University of Utah (1987).

[13] , Triangle mesh subdivision with bounded curvature and the convex hull property,
Tech. Rep. MSR-TR-2001-24, Microsoft Research (2001).

[14] B. B. Mandelbrot, The Fractal Geometry of Nature, New York: W. H. Freeman, p. 142,
1983.

[15] Przemyslaw Prusinkiewicz, Graphical applications of L-systems, Proceedings of Graphics
Interface 1986 / Vision Interface 1986, 247–253.

[16] Carlo H. Séquin, Hilbert Cube 512, http://www.cs.berkeley.edu/~sequin/SCULPTS/
CHS_bronzes/Hilbert512, Fabricated by Ex One Company, Prometal division, July 2005.

24


