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Abstract

We propose a numerical method for modeling highly deformable
nonlinear incompressible solids that conserves the volume locally
near each node in a finite element mesh. Our method works with ar-
bitrary constitutive models, is applicable to both passive and active
materials (e.g. muscles), and works with simple tetrahedra with-
out the need for multiple quadrature points or stabilization tech-
niques. Although simple linear tetrahedra typically suffer from
locking when modeling incompressible materials, our method en-
forces incompressibility per node (in a one-ring), and we demon-
strate that it is free from locking. We correct errors in volume with-
out introducing oscillations by treating position and velocity in sep-
arate implicit solves. Finally, we propose a novel method for treat-
ing both object contact and self-contact as linear constraints during
the incompressible solve, alleviating issues in enforcing multiple
possibly conflicting constraints.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling
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1 Introduction

Recently virtual humans have received increased attention for mod-
eling stunt doubles, virtual surgery, etc. When modeling virtual
humans, one needs to consider shape changes dictated by mus-
cles, skin, fat, and other organs. These soft biological tissues are
highly incompressible and involve complicated constitutive mod-
els including anisotropy and both active and passive components.
Notably, volume in biological tissues is conserved locally, and it
is insufficient to only conserve the total volume. Besides realistic
modeling of tissues for virtual humans, volume preservation is im-
portant in its own right. [Lasseter 1987] states, “The most impor-
tant rule to squash and stretch is that, no matter how squashed or
stretched out a particular object gets, its volume remains constant.”

Although our interest is in physically based simulation, constant
volume deformations are also of interest in shape modeling, e.g.
[Yoon and Kim 2006; Angelidis et al. 2006; von Funck et al. 2006].
Several authors have proposed methods that conserve total but not
local volume, e.g. [Promayon et al. 1996; Punak and Peters 2006],
and [Hong et al. 2006] proposed an ad hoc method to address the
“undesirable behaviors” caused by conserving only total volume.
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Figure 1: An incompressible elastic armadillo falls down a flight of
stairs preserving its volume to an accuracy of 0.1%.

A number of authors have considered approximate local volume
preservation using simple spring-like forces, e.g. [Cooper and Mad-
dock 1997; Nedel and Thalmann 1998; Bourguignon and Cani
2000; Molino et al. 2003; Teschner et al. 2004]. In the area of finite
element simulation, [Picinbono et al. 2001] added a volume pre-
serving force to each tetrahedron, a technique similar to the notion
of quasi-incompressibility (see [Simo and Taylor 1991]) which has
been used extensively in finite element simulations of muscle tis-
sue [Weiss et al. 1996; Teran et al. 2005]. See also [Platt and Barr
1988; Desbrun and Gascuel 1995]. The problem with mass-spring
and quasi-incompressible formulations is that they only provide a
force towards volume preservation, and therefore volume is not pre-
served in the presence of competing forces. This can be alleviated
to some extent by increasing the stiffness of the volume-preserving
forces, but this competes with and can overwhelm the other forces
in the model.

In fluid dynamics, volume preservation is addressed by decompos-
ing a vector field into the gradient of the pressure plus a divergence-
free part and subsequently discarding the gradient (see e.g. [Fedkiw
et al. 2001]). By introducing this pressure variable, one discards
compressible motions while retaining those orthogonal to volume
change. [Nixon and Lobb 2002] proposed a fluid dynamics ap-
proach to incompressible deformable solids, but used artificial com-
pressibility (requiring ad hoc volume adjustments) rather than fully
divergence-free velocities and did not consider constitutive mod-
els or elastic forces in the object’s interior. We take a fluid dy-
namics approach to deformable solids as well, introducing a pres-
sure variable into a standard finite volume approximation. Others,
such as [Roth et al. 1998], have used an independent pressure vari-
able for similar purposes. Besides using the pressure to obtain a
divergence-free velocity, we also project the positions to exactly
conserve volume avoiding error accumulation (note that Eulerian
fluids do not have a position variable). Similar approaches are
currently receiving attention in the computational mechanics liter-
ature, see e.g. [Dolbow and Devan 2004; Oñate et al. 2004; Lahiri
et al. 2005; Bijelonja et al. 2005; Bijelonja et al. 2006; Rojek et al.



Figure 2: An elastic sphere dropped on the ground. (Top) Enforcing the volume of each one-ring using our method maintains correct volume
within 1%. (Middle) Using standard finite element forces with a Poisson’s ratio of .45 results in a maximum volume loss of over 15%.
(Bottom) Increasing the Poisson’s ratio to .499 reduces the maximum volume loss to 2% but causes severe locking of the sphere’s degrees of
freedom hindering deformation.

2006; Cockburn et al. 2006]. In contrast to most of these works,
we present a simple technique independent of any particular con-
stitutive model or time integration scheme so that it is easily inte-
grated into any finite element solver. Moreover, we show how to
integrate this incompressibility constraint with other possibly com-
peting constraints, in particular object contact and self-contact.

2 Time Discretization

Regardless of the time integration scheme, our goal is to make the
velocity divergence free as well as to update the positions in a man-
ner that moves the nodes to maintain constant volume in one-rings.
When processing collisions or treating volume errors, some meth-
ods can only modify the position via adjustments to the velocity.
Unfortunately, this requires O(1) velocity changes to make O(∆x)
changes in position (since ∆t ∼ ∆x). Thus, we propose a method
that treats errors in position and velocity separately, ensuring that
volume errors due to collisions or other phenomena can be cor-
rected without introducing oscillations. Note that structural inte-
gration methods such as [Lahiri et al. 2005; Kharevych et al. 2006]
do not have this property: in order to quickly correct O(∆x) errors
in volume they must produce O(1) velocities.

For concreteness, we give the particular time integration scheme
used for our examples below, with the two additional steps required
for incompressibility highlighted, and then explain these new steps
in detail. We used a modified version of the semi-implicit Newmark
scheme of [Bridson et al. 2003] (see [Selle et al. 2007] for details).
A step of size ∆t from (xn,vn) to (xn+1,vn+1) proceeds as follows:

1. vn+1/2
? = vn + ∆t

2 a(tn+1/2,xn,vn+1/2
? )

2. ṽn+1/2 = vn+1/2
? + γx (to correct positions)

3. Modify ṽn+1/2 with elastic and inelastic self-repulsions

4. x̃n+1 = xn +∆tṽn+1/2

5. Collide with objects to obtain xn+1 and vn
?

6. ṽn = vn
? + γv (to correct velocities)

7. vn+1/2 = ṽn + ∆t
2 a(tn+1/2,xn+1/2,vn+1/2)

8. vn+1 = 2vn+1/2 − ṽn

9. Modify vn+1 for inelastic self-repulsions and friction

where xn+1/2 = (xn + xn+1)/2 in step 7 is the average of the initial
and final positions and a(t,x,v) is the acceleration due to all forces
except collisions and incompressibility. Step 1 is a backward Euler
solve to obtain a velocity for use in the position update, and we
adjust this velocity in step 2 so that step 4 corrects the volume in
each one-ring. After colliding with kinematic objects in step 5,
steps 7 and 8 advance the velocity field forward in time, and we
apply a correction in step 6 to make the velocity field divergence
free before time evolution.

If we temporarily ignore collisions, steps 2 and 4 combine to
form xn+1 = xn + ∆tvn+1/2

? + ∆tγx. This formula is valid for any
time integration scheme that computes xn+1 from xn, by defining
vn+1/2
? = (xn+1−xn)/∆t. The final volumes should equal the initial

volumes, i.e. V (xn+1) = V (x0). Substituting for xn+1 and lineariz-
ing gives V (xn)+∆tdivvn+1/2

? +∆tdivγx = V (x0), where div is the
volume-weighted divergence (see Section 3). Similar to the typical
pressure correction in fluids, we use ṽn+1/2 = vn+1/2

? −∇p̂/ρ , so
γx = −∇p̂/ρ where p̂ = ∆t p is the scaled pressure. Thus, we have
V (xn) + ∆tdiv vn+1/2

? −∆tdiv M−1grad p̂ = V (x0) where grad is
the volume-weighted gradient (see Section 3) and M is the diagonal
mass matrix. Rearranging into standard Poisson equation form,

−div M−1grad p̂ = −div vn+1/2
? − (V (xn)−V (x0))/∆t (1)



which can be solved for p̂, and then γx = −M−1grad p̂. Note that
div is n×3n, M is 3n×3n, grad is 3n×n, vn+1/2

? is a 3n-vector, and
p̂, V (xn), and V (x0) are n-vectors. Finally, we stress that (1) corre-
sponds to a single step of Newton’s method applied to the equation
V (xn+1) = V (x0).

We correct the velocity to be divergence free in step 6, although
this can be executed at any point in the algorithm since it is a static
projection. Taking the divergence of step 6 and setting ∇ · ṽn = 0
yields 0 = ∇ · vn

? + ∇ · γv, where γv is also defined as γv = −∇p̂/ρ .
Similar to (1) we obtain

−div M−1grad p̂ = −div vn+1/2
? (2)

which we can solve for p̂ and subsequently correct the velocity via
ṽn = vn

?−M−1grad p̂. The difference between (1) and (2) is that (2)
computes a divergence-free velocity whereas (1) adds an extra term
to obtain a non-zero divergence (similar to [Feldman et al. 2003])
in order to correct any drift in volume.

Although the velocity projection is always stable, small time steps
and significant volume errors can lead to difficulties as all the miss-
ing volume is recovered at once. We alleviate this by introducing
a minimum volume recovery time scale ∆τ and clamping the last
term in (1) such that its magnitude is no larger than V (x0)/∆τ in
any given time step.

3 Spatial Discretization

A mesh with n nodes has 3n degrees of freedom, and
enforcing a volume constraint for each tetrahedron typ-
ically results in more than 4n constraints (the number
of tetrahedra) making the system heavily overconstrained
resulting in locking as shown
in Figure 2 (bottom). We
avoid locking by enforcing in-
compressibility on one-rings,
i.e. on composite elements cen-
tered at each node, as shown in
the figure to the right (the blue
region). This approach adds
only n constraints. Composite
elements have proven useful in
a number of scenarios, see e.g.
[Thoutireddy et al. 2002; Boroomand and Khalilian 2004; Pires
et al. 2004; de Souza Neto et al. 2005]. Note that the spatial dis-
cretization derived below is identical to the average pressure ele-
ment in [Bonet and Burton 1998].

We use a standard finite volume discretization with all infor-
mation colocated on the nodes of the mesh as in [Teran et al.
2003]. Let p0 to p3 and x0 to x3 be the pressures and po-
sitions of the four vertices of a tetrahedron. Define P =
( p1 − p0 p2 − p0 p3 − p0 ), D = ( x1 −x0 x2 −x0 x3 −x0 ),
and Ḋ = ( v1 −v0 v2 −v0 v3 −v0 ), and let V be the volume of
the tetrahedron, ank the outward-facing area-weighted normal op-
posite vertex k, and B = V D−T = −( an1 an2 an3 )/3. The lin-
early interpolated velocity field is v(x) = ḊD−1(x−x0)+v0, from
which ∇ ·v(x) = tr(ḊD−1) = D−T : Ḋ.

The total volume-weighted divergence over the one-ring centered
at node k is

(div v)k =
1
4

∫
R(k)

∇ ·vdx =
1
4 ∑

t∈R(k)
VtD−T

t : Ḋt =
1
4 ∑

t∈R(k)
Bt : Ḋt

where R(k) is the set of tetrahedra incident on k, and the fact that the

Figure 3: Incompressible elastic sphere falls down a flight of stairs
illustrating rigid body collisions and contact.

divergence of the velocity is constant on each tetrahedron allows us
to assign 1/4 of the tetrahedral volume to each incident node.

We construct our gradient operator to be the negative transpose of
the divergence operator so that (1) and (2) result in symmetric pos-
itive definite systems allowing for fast iterative techniques such as
conjugate gradient. Thus, we want 〈∇p,v〉 = 〈p,−∇ · v〉, that is∫

Ω
∇p ·vdx+

∫
Ω

p∇ ·vdx =
∫

Ω
∇ · (pv)dx =

∫
∂Ω

pv ·dS = 0. This
holds, for example, in the case of Dirichlet boundary conditions
(p = 0 on the boundary). Note that we cannot define gradient us-
ing an analogue of the formula used to define divergence, since the
resulting forces would not conserve momentum near the boundary.

In order to define grad, we assume that the pressure field is
zero outside the object (noting that it is straightforward to re-
lax this restriction). We then partition the pressure field into
p = ∑t∈R(k) pt where pt is a pressure field that agrees with p
in t and is identically zero elsewhere. This allows us to restrict
attention to a single tetrahedron, since the linearity of the gra-
dient operator gives (grad p)k = ∑t∈R(k)(grad pt)k. Each tetra-
hedron in R(k) makes a contribution to (div v)k of the form
(div v)k = 1

4 B : Ḋ = − 1
12 ∑

3
j=1(v j −v0) ·an j = − 1

12 ∑
3
j=0 v j ·an j.

Thus, we can interpret the divergence operator on a single tetra-
hedron as a 4× 12 matrix −div = 1

12 ( N N N N )T where N =
( anT

0 anT
1 anT

2 anT
3 )T .

We can now write gradient as a 12 × 4 matrix grad =
1
12 ( N N N N ) so that the contribution of a single tetrahedron
to the gradient at a node k is (grad p)k = 1

12 Nk ∑
3
j=0 p j = 1

3 ank p,
where p is the average pressure of the four vertices of the tetrahe-
dron. Summing over R(k) gives

(grad p)k =
1
3 ∑

t∈R(k)
ptant,k

where pt is the average pressure in t and ant,k is the area-weighted
normal of the face opposite node k. This equation is exactly the
standard FVM force for a Cauchy stress of pt (see [Teran et al.
2003]) and can be computed by forming G = −Bt pt and dis-
tributing the columns of G to the nodes (where one node gets
the negation of the sum of the columns). In particular our vol-
ume preservation forces conserve momentum for each tetrahedron
independent of other tetrahedra, since the net force on a tetra-
hedron is ∑k Fk = −∑k(grad p)k = − 1

3 p∑k ank = 0. Angular



Figure 4: An incompressible elastic armadillo drops onto the
ground illustrating self-collisions and contact.

momentum is also conserved per tetrahedron, since the torque is
τ = ∑k(xk − c)× Fk = [∑k(xk − x0)× Fk] + [(x0 − c)× ∑k Fk].
The second term is zero since ∑k Fk = 0, and replacing Fk with
−(grad p)k makes the first term equal to − 1

3 p∑k(xk − x0)× ank,
which is zero by Jacobi’s identity.

4 Collisions and Contact

While steps 2 and 6 of the time integration algorithm work to pre-
serve incompressibility, steps 5, 3, and 9 add additional constraints
for object collisions and self-collisions. In practice, we have no-
ticed that the blind application of our algorithm can cause serious
artifacts due to these competing constraints, resulting in unusably
tangled surfaces. Therefore, we incorporate both object contact and
self-contact constraints into our incompressible Poisson equations.
Despite being important for robust behavior in the presence of colli-
sions, this coupling is largely undiscussed by previous authors who
focused primarily on integrating incompressibility into their partic-
ular time or space discretization schemes.

Step 5 sets the position and velocity of particles to respect col-
lisions with the object, and the conjugate gradient solver used in
step 7 incorporates constraints in the normal direction to maintain
the correct normal velocity for colliding particles, i.e. nT ∆v = 0
where n is the local unit normal to the collision body and ∆v is
the change in velocity due to conjugate gradient. We incorporate a
similar constraint into the Poisson equations solved in steps 2 and 6
of the algorithm, stressing that this is a linear constraint of the form
cT ∆v = 0. Self-contact can similarly be written as linear constraints
of the form cT ∆v = 0. Constraining the relative velocity of a point
and triangle to not change yields

nT (∆vp −w1∆v1 −w2∆v2 −w3∆v3) = 0

where wi are the barycentric weights of the point on the triangle in-
teracting with particle p and n is the triangle’s normal. Constraining

the relative velocity of interacting points in an edge-edge pair yields

sT ((1−α1)∆v1 +α1∆v2 − (1−α2)∆v3 −α2∆v4) = 0

where αi are positions of the interacting points along the segments
and s is the shortest vector between the interacting segments. Self-
contact constraints are generated for each point-triangle and edge-
edge pair currently in close proximity (these correspond to the re-
pulsion pairs in [Bridson et al. 2002]). Note that the ability to set
the velocity before the Poisson solve and guarantee no changes dur-
ing the solve is equivalent to using a Neumann boundary condition
on the pressure.

First consider a single constraint, i.e. a single point-object, point-
triangle, or edge-edge interaction. We project out any constraint
violating contribution by redefining γ = −PM−1grad p̂ altering
the left-hand sides of (1) and (2) to −divPM−1grad p̂, where
P projects a change in velocity using an impulse j defined by
P∆v = ∆v + M−1j. The impulse j can be found by minimizing
the kinetic energy jT M−1j/2 subject to cT

P∆v = 0 using the ob-
jective function jT M−1j/2 + λ (cT ∆v + cT M−1j). Differentiating
with respect to j and setting to zero gives j = −cλ , and substitut-
ing this into the constraint equation yields λ = (cT M−1c)−1cT ∆v.
Thus, P∆v = (I−M−1c(cT M−1c)−1cT )∆v and

P= I−M−1c(cT M−1c)−1cT .

Note that PM−1 is symmetric positive semidefinite with exactly
one zero eigenvalue.

In the case of many constraints CT∆v = ( c1 · · · cn )T∆v = 0
applying the projections in simple Gauss-Seidel order gives
Pn · · ·P1M−1 which is only symmetric if none of the constraints
overlap. For example, this is violated whenever point-triangle or
edge-edge pairs share vertices since the corresponding Pi

′s do not
commute. One might attempt to alleviate this problem by avoiding
sequential application and applying all constraints at once, but this
would require inversion of the n×n matrix CT M−1C appearing in
P = I−M−1C(CT M−1C)−1CT which is prohibitively expensive
for complex scenarios with dynamic constraints. Instead, we apply
the projections in alternating forward and backward Gauss-Seidel
sweeps using the symmetric positive semidefinite matrix

PM−1 = (P1 · · ·Pn · · ·P1)qM−1

where q is a small integer. Applying a single unsatisfied projection
Pi strictly reduces the energy, so this iteration is stable and always
converges to the correct constraint satisfying velocity. In practice,
we found that using only q = 4 iterations reduced the constraint vi-
olating components by 1-2 orders of magnitude on average. Since
the pressure system is itself solved to only 1% accuracy, and the
alternating sweeps ensure symmetry of the full matrix regardless of
convergence, this was sufficient for all our examples. These projec-
tions increase the cost of solving for pressure only moderately since
there are typically many fewer collisions than vertices and each Pi
can be applied in constant time. Since object and point-triangle con-
tacts have more coherent normals and are typically better behaved
than edge-edge contacts, we bias unconverged results towards the
former by placing them first (and last) in the ordering.

The final matrix −divPM−1grad p̂ is always symmetric positive
semidefinite, but can become singular in cases with large numbers
of constraints. Since conjugate gradient breaks down for singu-
lar matrices, we instead use MINRES, an alternative Krylov space
method which requires only symmetry of the matrix. MINRES re-
quired significantly fewer iterations than conjugate gradient even in
nonsingular cases (though this could change with preconditioning).
For example, Figure 2 averaged 72 iterations with conjugate gra-
dient and 34 iterations with MINRES (with small additional cost



Figure 5: 40 incompressible elastic tori fall into a pile illustrating complex collision and contact. Object contact and self-contact are repre-
sented as linear constraints during each Poisson solve. Each torus maintains correct volume to within 0.5%, even at the bottom of the pile.

per iteration). Thorough description and analysis of MINRES, con-
jugate gradient, and related solvers for singular or nearly singular
systems can be found in [Choi 2006].

5 Examples

We used the method of [Irving et al. 2004] for internal deviatoric
finite element forces in all our examples. When necessary, we used
a minimum volume recovery time scale of one-fifth of a frame.
Figure 2 shows a comparison of our method against a standard fi-
nite volume discretization using a 104k element mesh. Using a
3GHz Xeon machine, the computational cost was 18 s/frame for
our method, 25 s/frame with Poisson’s ratio .45, and 3.4 min/frame
with Poisson’s ratio .499. Similarly the simulation time for Fig-
ure 3 was 34 s/frame. The armadillo simulations in Figures 1 and
4 were both under 4 min/frame with a 112k element mesh. The
simulation in Figure 5 took an average of 15 min/frame for 40 12k
element meshes (500k elements total) with approximately 65% the
time spent in the two Poisson solves due to the complexity of the
contact constraints.

As a stress test for our method, we squeezed an incompressible
sphere with 22k elements between two kinematic plates (similar to
an example in [Hong et al. 2006]). The minimum volume recovery
time scale was not used (i.e. we set τ = 0). The sphere was success-
fully compressed to 1.1% of its original thickness before numerical
error forced the time step to zero (all computations were performed

Figure 6: Volume error, in percent, as a sphere is pressed between
plates. The plates are just touching the sphere at time 0 and move
towards each other with constant velocity until they meet at time 1.

in single precision). The total volume error remained below 1.7%
throughout the simulation, and was lower than 0.1%, 0.5%, and
1% until the sphere reached 13%, 2.3%, and 1.4% of its original
thickness, respectively. A plot of volume error vs. time is shown
in Figure 6. For this simulation we modified the time integration
scheme to enforce contact constraints during both backward Euler
solves (steps 1 and 7) instead of only in step 7, so that the volume
correction in step 2 used the correct collision-aware velocities for
particles in contact with the plates. The use of uncorrected veloc-
ities as input to volume correction would have caused significant
degradation for this simulation due to the high tension involved.
This modification was not necessary for the other examples, which
is fortunate since enforcing contact constraints in both solves typi-
cally causes sticking artifacts during separation.

6 Conclusion

We proposed a novel technique for enforcing local incompressibil-
ity in deformable solids drawing ideas from computational fluid
dynamics. We benefit from the simplicity and flexibility of tetra-
hedra while avoiding the pitfalls of locking by enforcing volume
preservation over one-rings instead of individual tetrahedra. We
augmented our method to incorporate both object contact and self-
contact constraints into the incompressible solve to alleviate prob-
lems with conflicting constraints. The method is trivially adapted
for triangles and thin shells.
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BIJELONJA, I., DEMIRDŽIĆ, I., AND MUZAFERIJA, S. 2005. A finite
volume method for large strain analysis of incompressible hyperelastic
materials. Int. J. Numer. Meth. Eng. 64, 1594–1609.
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